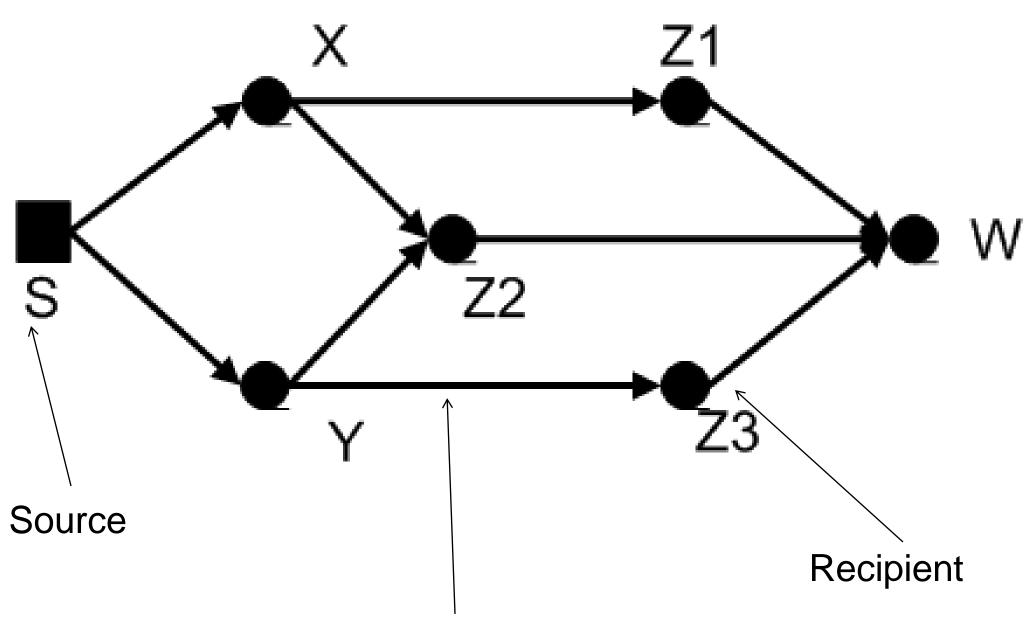
ComputerScience

The Filter-Placement Problem and its Application to Content De-Duplication

Dora Erdos, Vatche Ishakian, Andrei Lapets, Azer Bestavros, and Evimaria Terzi


Reduce number of duplicate syndicated news items

Abstract

In many networks, (e.g., RSS feeds, blogs, sensor networks, ad-hoc networks) nodes blindly relay information they receive to neighbor uncoordinated data dissemination often results in significan unnecessary, communication and processing overheads and redu utility of the network. To alleviate the negative impacts of infor multiplicity, we propose that a subset of nodes (selected at key posit the network) carry out additional information de-duplication functional refer to such nodes as filters. We formally define the Filter Plac problem as a combinatorial optimization problem, and stucomputational complexity for different types of graphs. We also polynomial-time approximation algorithms for the problem. Our experimental results indicate that less than a handful of filters are enough to alleviate more than 95% of the redundant information.

Propagation Model

- Communication networks can be represented by directed graphs. The nodes correspond to actors in the network, and di indicate the direction of information flow.
- A source in the network generates items.
- When an actor receives an item, it will make copies and copy of the item to every child of his.
- Every item may be viewed as if it travels a path from th given node. Hence a node may receive several copies item, one copy along every path leading from the source

Direction of Communication

Example Applications

ad-hoc	 News Media Networks 	
rs. This	Reduce number	
nt, yet	Notworks of DCC foods	
ice the	 Networks of RSS-feeds 	
	Remove redunda	
rmation		
tions in	 Sensor Networks 	
ity. We	Remove duplicat	
cement	Reduce energy r	
ıdy its		
present	 Content Networks 	
	— · · · ·	

Remove redundant feeds Sensor Networks Remove duplicate query answers Reduce energy needed to exchange duplicate measurements

- Content Networks
 - Remove duplicate updates
 - Effective eavesdropping

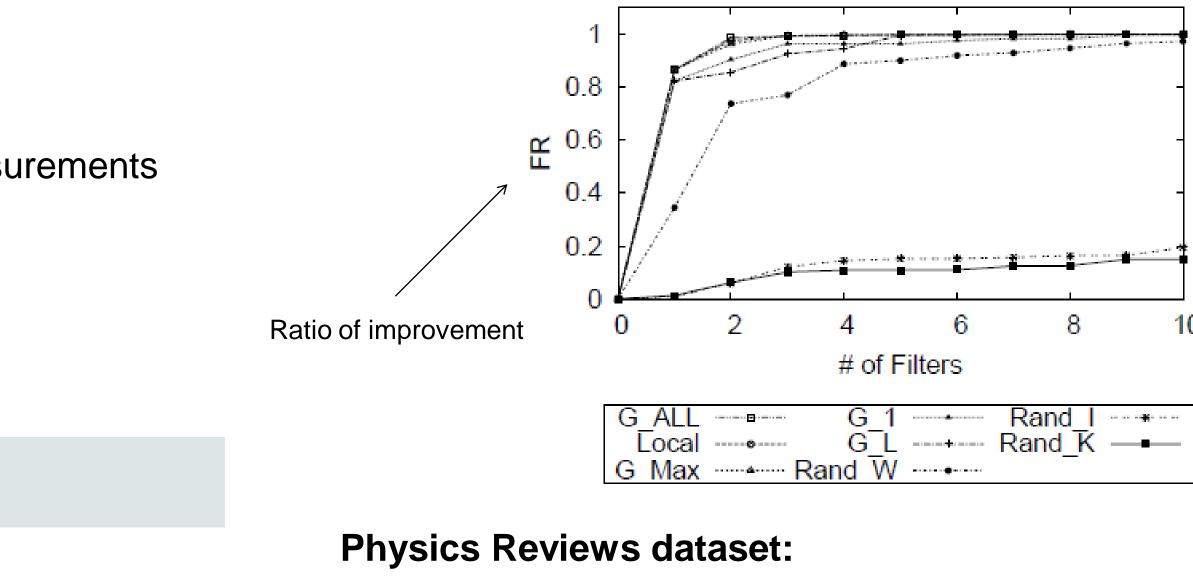
Optimum Filter Placement

ed graphs. The		
directed edges	FP problem: Given a directed graph G(V,E) and an integrade nodes A in V of size k, so as to maximize the gain function $F(A) = \Phi(0,V) - \Phi(A,V)$	
nd propagate a		
the source to a		
es of the same		
e to that node.		
	Number of items received	Number of items received

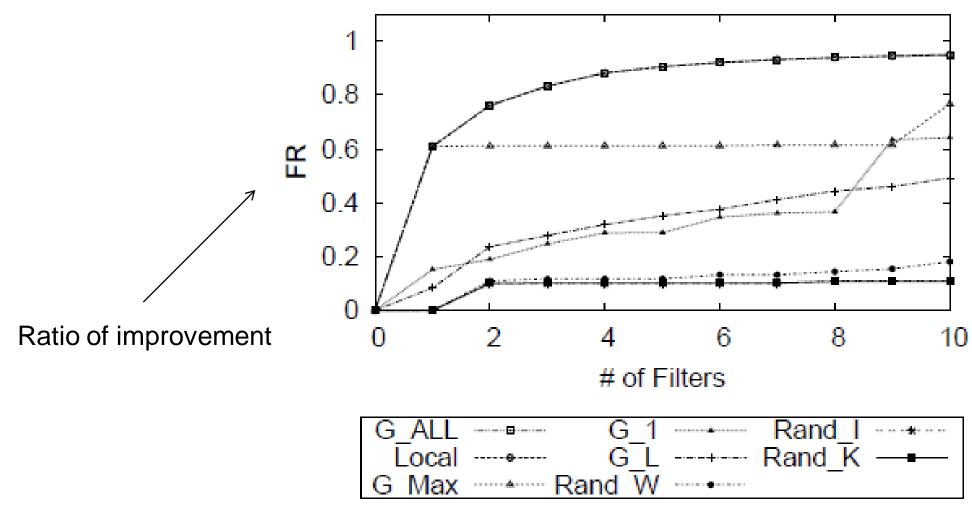
in the original network

Number of items received with A being aggregators

G(V,E) and an integer k, find a set of


Results

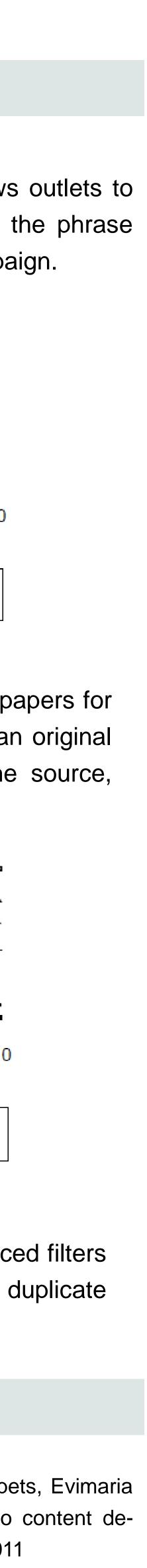
- FP is NP hard on arbitrary graphs.
- FP can be solved in polynomial time with dynamic programming on trees.
- FP is even NP hard on DAGs. However a greedy algorithm can achieve an (1-1/e)-approximation.
- Various heuristics for FP turn out to be faster and in practice as effective as our greedy algorithm.
- An optimal solution can be achieved by placing filters on all nodes.



News Dataset:

Graph of the online media network from large news outlets to micro blogs. In particular, it follows the spread of the phrase *"Lipstick on a pig"* during the 2008 presidential campaign.

Graph representing the citation network of physics papers for over 100 years. Data portrays the propagation of an original concept or idea, represented by the paper at the source, through the physics community.



Bottom Line:

In typical information networks, as few as 3 well-placed filters are enough to remove as much as 90% of duplicate information!

Reference

[1] Azer Bestavros, Dora Erdos, Vatche Ishakian, Andrei Lapets, Evimaria Terzi, The filter-placement problem and its application to content deduplication. . Tech Report 2011-005, BU, CS Dept Feb, 2011

