
Hypothetical Planning

Tamara Babaian
CIS Department, Bentley College,

Waltham, MA 02452
tbabaian@bentley.edu

Abstract

We present a novel method for interleaving
planning with execution, called iterative deep-
ening in hypotheticals. The method consists of
performing an iterative deepening search in the
space of partially ordered hypothetical plans.
Hypothetical plans are partial plans in which
the achievement of an otherwise unachievable
goal may be conditioned on certain outcomes of
sensing. This approach has been implemented
within the PSIPLAN-S framework and used
in a collaborative bibliography assistant, called
Writer’s Aid.

1 Introduction and Motivation

A planning agent operating in a real world must often
deal with domains in which only incomplete information
about the domain is available and furthermore, the com-
plete information can never be acquired due to the large
number of domain individuals. In such environments, us-
ing sensing actions judiciously and effectively to discover
information that is relevant, but yet unknown, becomes
critical.

Given correct, but incomplete description of the initial
situation, a solution plan that provably achieves the goal
may not exist. However, it may possible to construct the
solution by interleaving the process of planning with exe-
cution of some information gathering steps. The method
that we describe in this paper, called hypothetical plan-
ning, provides a mechanism for enacting such interleaved
planning with execution. It is formulated using entail-
ment and reasoning about knowledge and ignorance and
guarantees non-redundancy of information gathering in
that sensing actions are carried out only when the criti-
cal information is missing.

Hypothetical plans hypothesize on the value of an un-
known subgoal; by verifying a hypothesis via execution
of a sensing action, the planner eventually reduces the
incompleteness of the knowledge so that a solution plan
is found or the goal is proven to be unsatisfiable. For ex-
ample, having no information on the location of a paper,
the planner may adopt a hypothesis that the paper is

available from a certain collection, and verify the infor-
mation by querying the collection. Hypothetical plans
in addition to causal links between a subgoal and an
entailing it effect, contain hypothetical links, which link
knowledge effects to domain subgoals. The idea is as
follows: if neither p, nor ¬p is known to be true prior to
S, and there is a sensing action as whose effect entails
knowing the truth value of p, then by executing as the
planner may find out that p is true. A hypothetical plan
leads to a solution plan, if after verifying the hypothe-
sis, the plan can be successfully completed, which is not
guaranteed even when the hypothesis is confirmed by an
observation.

An alternative approach to planning with incomplete
information is conditional planning, i.e. creating branch-
ing plans based on the possible outcomes of a sensing ac-
tion. Applied to the above scenario, conditional planning
would involve planning ahead for each of the two possi-
ble outcomes of checking if the paper is available from
the searched collection. However, in the environments
with a high degree of incompleteness, planning ahead
for every contingency is computationally prohibitive, es-
pecially when a sensing action involves information on
multiple atoms.

Furthermore, predicting all possible outcomes of sens-
ing in a meaningful way becomes impossible when the
sensing action may discover new objects. In such situ-
ations, the agent needs to proceed with execution and
then complete the plan given the observation. For ex-
ample, consider the goal of removing all fragile objects
from a room. Given no prior information on the contents
of the room, it is impossible to predict which objects are
in it, if any of them are fragile, and therefore need to be
removed. Thus, it does not make sense to create plans
for removing any objects until the information on the
contents of the room becomes available.

Suppose that the agent operating in the room can
perform the sensing action of identifying all objects in
the room, and another one, determining if the object
is marked as fragile. Hypothetical planning would hy-
pothesize that by using the first action the agent may
discover that no objects are inside the room, thus yield-
ing the goal of having no fragile objects satisfied. If
however, upon executing the first action some objects

are found inside the room, the agent now has a choice
of either creating a plan to move all discovered objects
out, or first identifying which are fragile and only re-
moving those marked as fragile. The first solution can
be obtained without any further information gathering,
the second solution again requires hypothetical planning
and execution.

An approach to interleaving planning with execution
performed by XII [Golden et al., 1994] and PUCCINI
[Golden, 1998] planners (both based on the approach
used in IPEM [Ambros-Ingerson and Steel, 1988]) is the
other alternative to hypothetical planning. This method
treats execution as one of the nondeterministic choices
within the planning algorithm. In hypothetical planning
execution is triggered by the need, thus it is more tightly
constrained, and used only when necessary. The hypo-
thetical planner’s behavior is thus not dependent on the
model of nondeterminism in the planner implementation
and is better suited for an application in which the time
of response is critical and sensing operations may take
considerable time or are otherwise costly.

Hypothetical planning has been implemented in a par-
tial order planning [Russell and Norvig, 1995] algorithm
called PSIPOP-SE and used at the core of a collaborative
bibliography assistant, called Writer’s Aid [Babaian et al.,
2002]. PSIPOP-SE extends a sound and complete open
world planner PSIPOP[Babaian and Schmolze, 2000] to
planning with sensing, knowledge goals and interleaved
execution. It uses PSIPLAN-S representation for reason-
ing and planning with incomplete information, sensing
and knwoeldge goals.

When the set set of agents sensing actions is rich, the
use of hypothetical plans may considerably expand the
search space. To limit the search space, PSIPOP-SE ex-
plores the search space gradually increasing the maxi-
mum allowed plan number of hypotheses made in sup-
porting a subgoal. This parameter is called the hypothet-
ical level of a plan. Hypothetical level of a simple plan
is 0. An example of a plan with hypothetical level two is
a plan that hypothesizes that a paper is available from
the author’s homepage, and then, having no information
about the author’s homepage, hypothesizes that the url
for the homepage can be found from a known index.
Verification of each hypothesis reduces the uncertainty,
therefore the size of subspace of hypothetical plans on
each consecutive level is reduced, while the lower-level
hypothetical subspace is explored. In our experiments
Writer’s Aid was unable to explore the entire space of
plans of hypothetical level up to 2 at once due to the
large size of this space, but was successful at exploring
subspaces gradually, starting from maximum hypotheti-
cal level of 0. We call this approach iterative deepen-
ing in hypotheticals

The rest of the paper is organized as follows. An
overview of the PSIPLAN representation is presented
in the next section. The definition of a hypothetical
link and the partial order planning algorithm interleav-
ing planning with execution PSIPOP-SE are presented in
Section 3.

2 Overview of PSIPLAN

PSIPLAN assumes infinite number of domain constants,
and no other function symbols. PSIPLAN propositions
include ground domain atoms, domain ψ-forms and
knowledge ψ-forms. The general form of a ψ-form is

[Q(~x) except {σ1, . . . , σn}],
and it represents a possibly infinite set of ground propo-
sitions that are obtained by instantiating the formula
Q(~x) called the main form, with all possible ground as-
signments on the variables in ~x, except for the instances
specified by the substitutions σi called the exceptions.
Each σi is a substitution on a subset of variables of ~x.
The main form Q(~x) of a domain ψ-form is a disjunc-
tion of negated literals. In knowledge ψ-forms Q(~x)
has a form KW (P (~x)), where P (~x) is a disjunction of
negated literals. All variables in ~x are implicitly univer-
sally quantified.

The combination of domain atoms and ψ-forms is
necessary to describe situations as the following one, in
which the agent knows that

The only bibliographies preferred by Ed are the
digital library of the ACM, and maybe the Re-
searchIndex database.

In PSIPLAN-S the example statement above is expressed
by stating that

1. ACM’s digital library is a preferred bibliography,
which is represented by a ground atom:

a = PrefBib(ACM) (1)

2. Nothing is a preferred bibliography except for ACM
and the ResearchIndex, which is represented by the
ψ-form:

ψ = [¬PrefBib(b) except {{b = ACM}, {b = RI}}]
(2)

Thus, ψ denotes all ground instances
of the formula ¬PrefBib(b) minus two exceptions:
¬PrefBib(ACM) and ¬PrefBib(RI) and is equiv-
alent to the universally quantified predicate calculus
formula ∀b.¬PrefBib(b) ∨ (b = ACM) ∨ (b = RI)

Formally, we define the set of ground propositions rep-
resented by a ψ-form as follows

1. φ([Q(~x)]) = {Q(~x)σ |Q(~x)σ is ground }
2. φ([Q(~x) except {σ1, . . . , σn}]) =
φ([Q(~x)])− φ([Q(~x)σ1])− . . .− φ([Q(~x)σn])

Note that assuming infinite number of individual do-
main objects, a finite set of PSIPLAN-S domain proposi-
tions can represent an infinite number of ground negated
clauses without the knowledge of all domain objects by
the virtue of implicit universal quantification in ψ-forms.
However, it can represent only finite “positive knowl-
edge”, i. e. finite number of atoms.

The algorithms for reasoning with ψ-formsare not pre-
sented in this paper (see [Babaian, 2000]), however, we

note that these computations are carried out by manip-
ulations on the main form and exceptions of the ψ-forms
without expanding the ψ-form into the corresponding set
of ground propositions.

Knowledge ψ-forms similarly to domain ψ-forms,
represent a conjunction of all ground instances of the
main form, however each ground instance in this case is
a knowledge proposition. Knowledge propositions have
form KW (p), where p is a ground clause and repre-
sent knowing p or knowing not p, i.e. that the value
of a domain clause p is known without committing to
a particular value. For example, KW (PrefBib(ACM))
represents knowing-whether ACM is a preferred bibli-
ography. Note that KW (p) is semantically equivalent to
KW (¬p). However, in the main form of a ψ-form the
KW-fied formula is always a negated clause, as in the
knowledge ψ-form below that represents knowing the set
of all preferred bibliographies.

ψ̃ = [KW (¬PrefBib(b))] (3)

Knowledge propositions in PSIPLAN-S are used to rea-
son about knowledge and ignorance, represent informa-
tion goals and results of sensing actions. For example,
posted as a goal, ψ̃ requires knowing the value of each
ground instance of PrefBib(b), or in other words, know-
ing the set of preferred bibliographies. The effect of
checking if RI is a preferred bibliography, is a knowl-
edge proposition KW (PrefBib(RI)). A negated kw-
proposition ¬KW (p) represents ignorance about p.

Semantics
A world state is a truth assignment on domain atoms.
w(q) denotes that q is true in the world state w. Let W
denote the set of all world states.

To define a model we use k-states of Baral and Son
[Baral and Son, 2001]. A k-state is a pair (w,W), where
w denotes a world state from W, and W denotes a a set
of world states. A k-state represents a knowledge state of
an agent who actually being in the world state w thinks
it can be in any of the world states of W .

A set of models is denoted by α and defined below. We
are assuming that the agent’s knowledge is correct, hence
we require that for any k-state (w,W) in a model w ∈W .
In what follows, c represents a ground negated domain
clause and q represents a ground domain proposition, i.e.
domain atom or a ground negated clause.

1. α(q) = {(w,W) |w ∈W ∧ ∀w′ ∈W.w′(q)}
2. α(KW (c)) = {(w,W) |w ∈W ∧ ([∀w′ ∈W.w′(c)]∨

[∀w′ ∈W.w′(¬c)])}
3. α(¬KW (c)) = {(w,W) |w ∈W ∧ [∃w′ ∈W.w′(c)]∧

[∃w′′ ∈W.w′′(¬c)]}.
4. α({q1, . . . , qk}) = ∩ki=1α(qk).

A set of ground propositions q1, . . . , qk k-entails (or, for
brevity, entails) another ground proposition q, denoted
q1, . . . , qk |=k q if α({q1, . . . , qk}) ⊆ α(q).

Note that according to this semantics the k-entailment
of ground domain propositions is equivalent to the ordi-
nary entailment. Furthermore,

q |=k KW (q), and,q |=k KW (¬q).
A set of models of a PSIPLAN-S proposition is defined

as the set of models of the set of ground propositions it
represents.

Definition 1 For a PSIPLAN-S proposition p,α(p) is de-
fined as the set of models α(φ(p)).

Definition 2 For a set of PSIPLAN-S propositions
p1, . . . pm, p

p1, . . . pm |=k p if and only if α({p1, . . . , pm}) ⊆ α(p)

2.1 ψ-form Entailment
While we do not have the space to present the details
of the algorithms for computing entailment in PSIPLAN,
we state several key properties underlying those algo-
rithms, and illustrate them with examples. The prop-
erty critical for the efficiency of ψ-form reasoning is for-
mulated in Theorem 1 below: given a set of ψ-forms
Ψ = {ψ1, . . . , ψn}, Ψ |=k ψ only if there is a ψ-form
ψi ∈ Ψ that nearly entails ψ, i.e. main part of ψi entails
the main part of ψ, or [M(ψi)] |=k [M(ψ)].

Theorem 1 Given a set of ψ-forms Ψ = {ψ1, . . . , ψn}
and a ψ-form ψ, Ψ |=k ψ only if there is a ψ-form ψi in
Ψ such that [M(ψi)] |=k [M(ψ)].

E-Difference For any two sets of ground propositions
A and B, e-difference is defined as follows.

B−̇A = {b | b ∈ B ∧ A 6|=k b}
As ψ-forms are compact representations of sets of

ground propositions, we extend the e-difference opera-
tion to ψ-forms. The following example illustrates the
e-difference operation.

Example 1 Let
ψ denote [Kn(¬In(R, z)) except {{z = A}, {z = B}}],
which represents that there are no items in room R
except for possibly A and B. Further, let ψ̃ denote
[KW (¬In(R, x) ∨ ¬Fragile(x))], which can represent a
goal of knowing for all objects (x) if they are inside room
R and also fragile. ψ entails most of ψ̃, indeed, since
¬In(R, z) is true for all values of z except possibly A

and B, then so is the disjunction inside the ψ̃’s KW
clause. Thus, the only parts of ψ̃ that are not entailed
by ψ are

ψ̃1 = [KW (¬In(R,A) ∨ ¬Fragile(A))]
ψ̃2 = [KW (¬In(R,B) ∨ ¬Fragile(B))]

and therefore ψ̃−̇ψ = {ψ̃1, ψ̃2}
The e-difference operator plays a key role in computing

entailment. The next Theorem describes the necessary
and sufficient conditions for entailment of a domain or a
knowledge ψ-form by a set of domain atoms and ψ-forms.

We call a set s of domain propositions saturated, when
there are no possible resolutions between a ground atom
a and a ground negated clause ¬a ∨ ¬a1 ∨ ¬an, repre-
sented by some ψ-form in s. A saturated equivalent of
such a set can be computed in polynomial time in the
number of propositions (ψ-forms and atoms) in s.

Theorem 2 Let s = A ∪ Ψ be a consistent saturated
set of domain atoms (A) and ψ-forms (Ψ), and ψ is any
ψ-form (either domain or knowledge). s |=k ψ if and
only if

1. there exist a1, . . . , an ∈ A, such that ψ =
[KW (¬a1 ∨ . . . ∨ ¬an)], or

2. there exists ψ ∈ Ψ, such that [M(ψk)] |=k [M(ψ)],
and, furthermore, s− ψ |=k (ψ−̇ψk)

PSIPLAN-S SOK
SOK (State Of Knowledge) database is a consistent set
of PSIPLAN-S domain atoms or psiforms. It represents
the knowledge available to the system in the following
way:

1. a domain proposition p is true in the world, if and
only if SOK |=k p,

2. furthermore, we make a Closed Know-Whether As-
sumption (CKWA) and assume that if SOK 6|=k

KW (p) then the truth value of p is not known, i.e.
¬KW (p)

The set of possible worlds corresponding to this repre-
sentation consists of all world states in which everything
known to the agent is true, and only things known to the
agent are guaranteed to be true. Such representation is
sound and complete, due to soundness and completeness
of reasoning about domain and knowledge propositions
from a set of domain propositions in PSIPLAN. Impor-
tantly, the inference procedures also run in polynomial
time and are fast, which bears directly on the speed of
planning with PSIPLAN-S. PSIPLAN-S thus ensures pre-
cise and fast reasoning about knowledge and ignorance.

PSIPLAN-S Actions and SOK update
PSIPLAN-S distinguishes two types of actions: domain
actions that change the world (e.g., an action of down-
loading a paper from a url), and sensing actions that do
not change the world but only return information about
it (e.g., querying a bibliography).

Each domain action has a list of preconditions, P, and
an encoding of the effects of the action as a set of liter-
als, called the assert list , A. The propositions in P can
include literals and quantified ψ-forms, where the term
quantified is used informally to denote a ψ-form that uses
at least one variable, and thus represents infinite num-
ber of ground instances. We assume that an action is
deterministic and can change the truth-value of only a
finite number of atoms, thus assert list contains literals
only, and no quantified ψ-forms.

To update SOK s after executing a domain action
ad all propositions whose truth value1 could have been

1true or false

changed must be removed from s – these are all proposi-
tions entailed by the negation of some effect of ad. The
propositions entailed by effects of ad are also removed,
and then the effects of a are added to the new SOK. The
agent’s SOK after executing a domain action ad in the
SOK s is computed by function update(s, ad) below.

update(s, ad) = ((s−̇A−(ad))−̇A(ad)) ∪ A(ad), (4)

where A−(ad) denotes the set of propositions obtained
by negating each proposition in ad’s, assert list A(ad).

Sensing actions also have preconditions. Effects of the
sensing are given by its knowledge list, denoted K. The
propositions in K are kw-ψ-forms. After a sensing ac-
tion is executed, it returns an observation list of kn-
propositions corresponding to the information that was
learned, denoted ∆.

Download(?p, ?s, ?u)
P : HasPaper(?u, ?s, ?p)
A : Got(?p)

QueryBib(?b, ?kwd)
P : PrefBib(?b)
K: [KW (¬Rel(p, ?kwd) ∨ ¬InCollection(p, ?b))]

Figure 1: Example of Writer’s Aid’s domain and sensing
actions. The variable p is implicitly universally quantified.
Other variables are action schema parameters

Figure 1 provides examples of two PSIPLAN-S actions.
Download(?p, ?s, ?u) is an action of downloading paper
?p from url ?u of source ?s.QueryBib(?b, ?kwd) is a sens-
ing action that identifies all papers, which according to
bibliography ?b are related to keyword ?kwd. The ef-
fect of this action is encoded in the knowledge list that
contains a quantified ψ-form, and states that as a result
of this action the set of all papers in collection of bib-
liography ?b that are related to keyword ?kwd will be
identified.

For example, suppose after executing sensing action
a = QueryBib(ACM,XII)
with effect [KW (¬Rel(p, ?kwd) ∨ ¬InCollection(p, ?b))]
papers Paper1 and Paper2 were found as the only ones
related to keyword XII, i.e. ∆(a) consists of the follow-
ing propositions:

[¬Rel(p,XII) ∨ ¬InCollection(p,ACM)
except{p = Paper1}, {p = Paper2}]
Rel(Paper1, XII), InCollection(Paper1, ACM)
Rel(Paper2, XII), InCollection(Paper2, ACM)

(5)

After the execution of a sensing action as, the set of
observed propositions, denoted below by ∆(as) is added
to the SOK, i.e.

update(s, as) = s ∪∆(as) (6)

After propositions from ∆(a) are added to the SOK,
all possible resolutions from SOK propositions are com-
puted and added to the new SOK – this is a necessary
step that guarantees soundness and completeness of do-
main goal inference in PSIPOP-SE.

3 Planning with Hypotheticals
We assume the reader’s familiarity with Partial Order
Planning (POP) [Russell and Norvig, 1995]. PSIPOP-SE
is a partial order planner that builds on its predecessors:
a sound and complete open world partial order plan-
ning algorithm PSIPOP [Babaian and Schmolze, 2000]
and PSIPOP-S[Babaian, 2000], which is an extension of
PSIPOP to planning with sensing and knowledge goals.
All three algorithms are based on PSIPLAN-S represen-
tation and calculus. PSIPOP-SE extends PSIPOP-S to
planning with execution.

A hypothetical link is a link between an effect of
a sensing action and a domain subgoal, when the truth
value of the subgoal proposition is unknown and it is
possible that the result of sensing will reveal that the
subgoal is true. To define hypothetical links formally, we
first need to define the kwfy() operation for PSIPLAN-S
domain propositions. Intuitively, the purpose of kwfy(p)
is to reflect the existing knowledge regarding all ground
propositions represented by p. kwfy(p) defines the small-
est PSIPLAN-S knowledge proposition implied by p.
Definition 3 kwfy(p) operator.
• For a domain atom a, kwfy(a) = [KW (¬a)].
• For a domain ψ-form [P (~x) except {σ1, . . . , σn}],

kwfy(ψ) = [KW (P (~x)) except {σ1, . . . , σn}].
A hypothetical link is created between an effect k of

a sensing step Ss and a (domain) precondition p on step
Sp if and only if

1. k |=k kwfy(p), i.e. the effect of sensing will result
in knowing the truth value of every ground propo-
sitions denoted by p, and

2. kwfy(p) does not hold immediately prior to step Sp,
i.e. the values of at least some ground propositions
denoted by p are not known prior to Sp.

Hypothetical links are similar in spirit to Golden’s ob-
servational links [Golden, 1998], but observational links
to p do not require agent’s ignorance regarding p and are
formulated using conditional effects rather than knowl-
edge propositions.

In the example, illustrated in Figure 2, the
planner attempts to find support to a precondi-
tion to the Download action. The precondition
HasPaper(P, ?s, ?u) requires that paper P be avail-
able for download from some source ?s at some
url ?u. Suppose, that neither the agent’s current
state of knowledge nor its domain actions can bring
about the achievement of the goal, however there is
a sensing action QuerySourceForPaper(P, ?s) with
effect k = [KW (¬HasPaper(P, ?s, u))]. This ef-
fect entails kwfy(HasPaper(P, ?s, ?u)), which equals
[KW (¬HasPaper(P, ?s, ?u))] . Note that here, as ev-
erywhere else, variables ?u, ?s are implicitly existen-
tially quantified and treated as Skolem constants, while
u in the knowledge effect k is the ψ-form’s univer-
sally quantified variable. To ensure that the sens-
ing would not be redundant, the planner first tries to

prove that given the current partial plan, the value of
HasPaper(P, ?s, ?u), is not already known, by calling
procedure VerifyIgnorance().

Procedure VerifyIgnorance()is passed a partial plan
and a domain subgoal p on step Sp, and tries to find
support to the goal p without adding any new actions.
When it fails to find support for kwfy(p), by the CKWA
we can assume value of p is not known, and the procedure
returns true. Otherwise, it returns false.

VerifyIgnorance(plan, p, Sp)
if exist effects e1, . . . , en of steps in plan
possibly before Sp, such that e1, . . . , en |=k kwfy(p)

return false

else return true

?

£
¤

¢
¡

?

£
¤
¢
¡

Download(P, ?s, ?u)

Got(P)

HasPaper(P,?s, ?u)

Got(P)

SOK

Goal

QuerySourceForPaper(P, ?s)

Source (?s)

[KW(¬HasPaper(P, ?s, u))]

Figure 2: A depiction of a hypothetical plan. (Steps are
represented by boxes containing action operator’s name and
parameters. – with dashed arrows.

The maximum number of consecutive hypotheses
made in supporting any subgoal in a plan is called the
hypothetical level of a plan Hypothetical level of a
regular (also here called simple) partial order plan is 0.
The space of hypothetical plans is explored gradually,
by limiting the maximum allowed hypothetical level of a
plan to avoid too much hypothesizing.

PSIPOP-SE algorithm is outlined in Figure 3.
Note that this formulation is generalized and leaves
out many details of PSIPLAN-S reasoning and associ-
ated goal satisfaction and threat resolution techniques,
which can be found in [Babaian and Schmolze, 2000;
Babaian, 2000], in order to focus on the details of plan-
ning with hypotheticals. PSIPOP-SE is a nondetermin-
istic algorithm that is passed the initial plan encoding
just the current SOK and goal state as its initial and
goal steps, and an additional parameter maxHL denoting
the maximum hypothetical level of explored plans. The
following fields are added to the standard plan structure
to support hypothetical planning: hlevel denotes the
hypothetical level of the plan, suspendedGoals denotes
a list of sets of goals, planning for which is suspended
until the sensing step(s) are executed.

PSIPOP-SE starts by calling procedure POPH. POPH
is searching for a way of supporting an open goal of a
partially ordered plan that is passed in as a parameter,
and simultaneously explores the hypothetical support

for the goal. Hypothetical plans are created by proce-
dure FindHypPlans, which nondeterministically chooses
a sensing step - source of the hypothetical link to the
goal in consideration, suspending the rest of the plan’s
open goals, and setting the set of plan’s goals to the pre-
condition of the added sensing step. The hypothetical
plans returned by FindHypPlans are not expanded fur-
ther unless the search for a simple solution plan results
in failure.

If POPH returns with a failure, in other words, a sim-
ple plan that achieves a goal does not exist, PSIPOP-SE
nondeterministically chooses a hypothetical plan from
HPlans. The picked hypothetical plan has as its list of
open goals the preconditions of the earliest source of the
first in order hypothetical link, and the rest of the plan’s
open preconditions as its suspended goals. These sub-
goals were suspended because unless the target condition
of the hypothetical link is found to be true, it does not
make sense to continue planning to satisfy the rest of
subgoals of the plan.

To enable execution of the first in order information
gathering action, PSIPOP-SE calls procedure HPOP,
which searches for a (partial) plan that makes the sens-
ing step-source of the hypothetical link executable from
the initial state. If such completion is found, HPOP ex-
ecutes the plan up until the source of the hypothetical
link, otherwise, the next hypothetical plan is explored.

Upon execution of each action SOK is updated
according to equations (4) and (6) in procedure
UpdateAfterExecution. The executed plan is updated
as well: the executed steps are removed, links originat-
ing in the executed steps are now drawn from the initial
step denoting the SOK, previously suspended goals are
restored and the planner continues to work towards com-
pleting the plan.

It is possible that due to the executed portion of the
plan some sensing acts may have become redundant,
as previously unknown propositions became known.
To avoid redundant information gathering, procedure
HPOP verifies that the sensing is necessary by call-
ing VerifyIgnorance, when picking the next hypothetical
plan to expand. Note also that some causal links may
be invalidated because the truth value of a proposition
was reversed by the executed actions. This would not
happen to the executed current plan, but it may affect
other hypothetical plans in HPlans. Thus, HPOP may
discard some invalid links originating from the initial
step (SOK) that are no longer valid, adding their target
conditions to the plan’s goals.

4 Conclusions and Future Work

We have presented a novel method for interleaving plan-
ning with execution, which enables information gather-
ing to be used in support of planning goals. The method
has been implemented within a partial order planner,
however, its formulation is based on the general concepts
of entailment, reasoning about knowledge and ignorance,
which could make the method applicable to other plan-

PSIPOP-SE (init-plan, maxHL)
HPlans = ∅ // hypothetical plans
if POPH(init-plan, HPlans, maxHL) fails

Choose a plan ph from HPlans
remove ph from HPlans
HPOP(ph, maxHL, HPlans)

POPH(plan, maxHL, HPlans)
if (plan.goals = ∅) return plan
else plan’ = copy(plan)

Choose a goal g from plan’.goals
if FindSupport(plan’,g) fails or
ResolveThreats(plan’,g) fails)

result =∅
HPlans=HPlans∪FindHypPlans(plan’,maxHL, g)
if result =∅ then fail
else POPH(plan’, maxHL, HPlans)

FindHypPlans(plan, maxHL, g)
// where g denotes a precondition p on step Sp
if (plan.hlevel<maxHL) and V erifyIgnorance(p, Sp) =
true

Choose a sensing operator Ss with effect k
such that k |=k kwfy(p). If found Ss:

planh = copy(plan)
add hypoth. link Ss −− > Sp to planh.links
planh.hlevel = planh.hlevel + 1
push (planh.goals) to planh.suspendedGoals
planh.goals = P(Ss)
return planh

HPOP(planh, maxHL, HPlans)
-- Complete and execute a hypothetical planh
Remove invalid causal links with source in the SOK
from planh.links,
add their goals to plan.goals
Find the earliest step Ss - source of hypothetical
link in planh.
Suppose it is linked to precondition p of Sp
if VerifyIgnorance(p, Sp) = true and ph.goals 6= ∅

// find an executable completion of ph, phe
phe = POPH(planh, maxHL, HPlans))

else phe = ph;
Execute phe up to and including Ss
UpdateAfterExecution (phe)
if (phe.hlevel > 0)
// remaining plan still has hypothetical links

HPOP(phe, maxHL, HPlans)
else POPH(phe, maxHL, HPlans)

UpdateAfterExecution (ph)
For each executed step S in ph

SOK = update(SOK,S) // equations (4,6)
Replace S with SOK in all causal links
originating from S to the rest of plan

ph.hlevel = ph.hlevel - 1
ph.goals = pop a list from ph.suspendedGoals

Figure 3: Nondeterministic algorithm PSIPOP-SE.

ning and acting frameworks.
Future research needs to focus on fully exploring the

properties of hypothetical planning on problems from a

variety of domains, generalizing the hypothetical plan-
ning approach to planning in domains with irreversible
actions, and examining formal issues related to sound-
ness and completeness of the search for hypothetical
plans in PSIPOP-SE.

References
[Ambros-Ingerson and Steel, 1988] Jose A. Ambros-Ingerson

and Sam Steel. Integrating planning, execution and mon-
itoring. In Proceedings of the Seventh National Confer-
ence on Artificial Intelligence (AAAI-88), pages 83–88,
St. Paul, Minnesota, 21–26 August 1988. Morgan Kauf-
mann.

[Babaian and Schmolze, 2000] T. Babaian and J. Schmolze.
Psiplan: open world planning with ψ-forms. In Proceedings
of AIPS’00, pages 292–300, 2000.

[Babaian et al., 2002] Tamara Babaian, Barbara J. Grosz,
and Stuart M. Shieber. A writer’s collaborative assistant.
In Proc. of IUI’02, pages 7–14. ACM Press, January 2002.

[Babaian, 2000] Tamara Babaian. Knowledge Representa-
tion and Open World Planning Using ψ-forms. PhD thesis,
Tufts University, 2000.

[Baral and Son, 2001] Chitta Baral and Tran Cao Son. For-
malizing sensing actions – a transition function based ap-
proach. Artificial Intelligence, 125, 2001.

[Golden et al., 1994] K. Golden, O. Etzioni, and D. Weld.
Omnipotence without omniscience: Efficient sensor man-
agement for planning. In Proceedings of AAAI-94, 1994.

[Golden, 1998] Keith Golden. Leap before you look: Infor-
mation gathering in the puccini planner. In Proceedings of
AIPS’98. AAAI Press, June 1998.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice Hall,
Englewood Cliffs, NJ, 1995.

