Handout 8§ CS230 — Introduction to Programming with Python—Spring’24 Page I of 4

Handout 8
Dictionaries. Sets.

DICTIONARY

Dictionary, a.k.a hash map or associative array, is a flexibly-sized collection of key-value pairs, where
key and value are Python objects.

Think of a dictionary as a quick look-up table, where you look-up information by its key. (There is no
look-up operation form value to the key.)

Some examples: dictDemo.py

def main():
stock_prices_dict = { # Dictionary with string keys and numeric values
"AAPL": 135.25,
"GOOGL": 2500.75,
"MSFT": 240.50,
"AMZN": 3250.00,
"FB": 310.75

}

Each month is associated with a list of sales data (numbers)
sales_data_dict = { # for different products or categories.
“Jan": [10000, 15000, 12000, 18000],
“Feb": [11000, 16000, 13000, 19000],
"Mar": [12000, 17000, 14000, 20000]

}

sales_by rep _data_dict = {
“Jan": {"Joe":10000, "Jen":15000, "Emma": 18000},
"Feb": {"Emma":1300, "Greg":15000},
"Mar": {"Joe":10300, "Greg":15000, "Jeff": 18000}

}

person_info = { # Dictionary with mixed data types
"name": "John Doe",
"age": 35,

"is_employed”: True,
"height": 175.5,
"languages_spoken": ["English", "Spanish"],
"contact_details": {
"email": "john@example.com",
"phone": "+1234567890",
"address": {
"street": "123 Main St",
"city": "Anytown",
"zipcode": "12345"
}
}
}
code_dict = {
101: "apple”,
340: "orange",
450: "grape”,
25: "banana",
6000: "watermelon"

Handout 8§ CS230 — Introduction to Programming with Python—Spring’24 Page 2 of 4

Important rules:

e Accessis by key, e.g.

google price = stock prices_dict["GOOGL"]

Keys are distinct (i.e. no duplicate keys)
Key-value pairs are not stored in any specific order.
Keys must be of an immutable type (e.g. int, string, tuple).
Value can be of any type.
Create a dictionary by using curly braces{} and listing key:value pairs separated by a comma:

dict
dict

{} # Create an empty dictionary
{"john":40, "peter":45} # Create a dictionary

e To add an entry to a dictionary: dictionary[key] = value, e.g.
dict["susan"] = 50

e To delete an entry from a dictionary, use del dictionary[key]

e To check if a key is in the dictionary: in

PRACTICE PROBLEMS

1. Experiment with adding and modifying values in the dictionaries in dictDemo . py
2. Define a function with no parameters, which reads people’s names and an associated
number (e.g. distance traveled to work), until user enters an empty string and creates
and returns a dictionary of entries name :distance.
3. Assume the same email can be entered more than once — change the program
a) to keep only the first number entered with the repeated email,
b) to keep all numbers

Method(params):returns Description
d.keys():dict_keys Returns a sequence of keys.
d.values():dict_values Returns a sequence of values.
d.items():dict_items Returns a sequence of tuples (key, value).
d.clear(): None Deletes all entries.
d[key] Returns the value for the key.
d.get(key): value
d.pop(key): value Removes the entry for the key and returns its value.
Examples:

- how to iterate over dictionaries
for key in dict.keys(): Iterate through the keys of the dictionary

Iterate through the keys of the dictionary in
sorted order

for value in dict.values(): Iterate through the values of the dictionary

for key in sorted(dict.keys()):

Handout 8§ CS230 — Introduction to Programming with Python—Spring’24 Page 3 of 4

for key, value in dict.items(): Iterate through the key/value pairs of the
for itemTuple in dict.items(): dictionary

- often helps to turn the keys or values into lists, e.g. 1st = list(dict.keys())

PRACTICE PROBLEMS

4. Create a function within dictDemo . py to do each of the following
a. Compute the max stock price and print out the name of stock(s) with that price
b. Compute and print the total sales from sales_data_dict
c. Addarecord in sales_data_dict for April, with value [100, 200]
d. Add arecord in sales_by_rep_data_dict for March reflecting sales by Amy of
$3000
Print out monthly sales totals based on sales_by_rep_data_dict
f. Crate a sorted list of values in the code_dict.

o

5. Add code to program developed in problem 2 to find the names of the people who
travels more than an average distance (assuming there is one such person).

6. Implement with a dictionary: File weeklyTasks.txt has day names followed by task
descriptions:

Mon -- office hours

Tue - meeting

Mon - research meeting

Wed - classes

Thu -- office hours

Fri - meetings

Thu - faculty meeting

Fri - paper deadline

Create a program which will
A. read the weeklyTasks.txt file, collecting all tasks for a day under the same
dictionary entry, so, for example, the value for Mon would be a list ["office
hours", "research meeting"]
This functionality should be implemented in a function createDictFromFile(),
which must be passed a path to a file as a parameter, and returns the dictionary.

B. Ask the user to specify the day, then retrieve and print the day’s task according to
the constructed dictionary.

This functionality should be implemented in a function displayTask(), which must
be passed the dictionary associating days with tasks, as a parameter, and runs the
loop displaying the tasks for the user’s specified day.

Include a main function that starts the program and calls the two functions in A,B,
appropriately.

_3-

Handout 8§ CS230 — Introduction to Programming with Python—Spring’24 Page 4 of 4

SET

A set is an unordered collection with no duplicate elements. Sets are mutable, supporting add/remove/
Basic uses include membership testing and eliminating duplicate entries.

Set objects also support mathematical operations like union, intersection, difference, and symmetric
difference.

Create sets using curly braces {} or the set() function .
Note: to create an empty set you have to use set(), not {}; the latter creates an empty dictionary.

| To eliminate duplicates from any collection ¢ — create a set out of it, calling set(c)

Examples:
>>> 1st = [1,2,3,3,3,2,1]
>>> set(lst)
{1, 2, 3}

>>> words = "To be or not to be".lower().split()
["to', 'be', 'or', 'not', 'to', 'be']

>>> distinctWords = set(words)

{'be', 'not', 'or', 'to'}

>>> sorted(distinctWords)

['be', 'not', 'or', 'to']

Operations on sets: in, not in, len(), max(), min()
Set operations as methods: intersection, union, difference
Set operations as operations: &, |, -

 method ______operation _____ description
a.union(b) alb Set of items in a or b
a.intersection(b) a &b Set of items in both a and b
a.difference(b) a-b Set of items in a that are not in b

Set-modifying methods:

s.add (e): add element e to set s.
s.remove (e): remove element e from set s; error if e is not in s.
s.discard (e): remove element e from set s, if it is present.
s.clear() removes all elements from s
Examples:
>>> setl = {'green', 'blue', 'red'}

>>> set2 = {'green’', 'blue', 'yellow'}
>>> setl.union(set2)

{'blue', 'red', 'yellow', 'green'}

>>> setl | set2

{'blue', 'red', 'yellow', 'green'}

>>> setl.intersection(set2)
{'blue', 'green'}

>>> setl & set2

{'blue', 'green'}

https://www.programiz.com/python-programming/methods/tuple/count
https://www.programiz.com/python-programming/methods/tuple/count
https://www.programiz.com/python-programming/methods/tuple/count

	Handout 8
	Dictionaries. Sets.
	Dictionary
	Practice problemS
	Practice problemS
	Set

