
Handout 8 CS230 – Introduction to Programming with Python–Spring’24 Page 1 of 4

 - 1 -

Handout 8
Dictionaries. Sets.

DICTIONARY
Dictionary, a.k.a hash map or associative array, is a flexibly-sized collection of key-value pairs, where
key and value are Python objects.
Think of a dictionary as a quick look-up table, where you look-up information by its key. (There is no
look-up operation form value to the key.)

Some examples: dictDemo.py
def main():
 stock_prices_dict = { # Dictionary with string keys and numeric values
 "AAPL": 135.25,
 "GOOGL": 2500.75,
 "MSFT": 240.50,
 "AMZN": 3250.00,
 "FB": 310.75
 }

 # Each month is associated with a list of sales data (numbers)
 sales_data_dict = { # for different products or categories.
 "Jan": [10000, 15000, 12000, 18000],
 "Feb": [11000, 16000, 13000, 19000],
 "Mar": [12000, 17000, 14000, 20000]
 }

 sales_by_rep_data_dict = {
 "Jan": {"Joe":10000, "Jen":15000, "Emma": 18000},
 "Feb": {"Emma":1300, "Greg":15000},
 "Mar": {"Joe":10300, "Greg":15000, "Jeff": 18000}
 }

 person_info = { # Dictionary with mixed data types
 "name": "John Doe",
 "age": 35,
 "is_employed": True,
 "height": 175.5,
 "languages_spoken": ["English", "Spanish"],
 "contact_details": {
 "email": "john@example.com",
 "phone": "+1234567890",
 "address": {
 "street": "123 Main St",
 "city": "Anytown",
 "zipcode": "12345"
 }
 }
 }
 code_dict = {
 101: "apple",
 340: "orange",
 450: "grape",
 25: "banana",
 6000: "watermelon"
 }

Handout 8 CS230 – Introduction to Programming with Python–Spring’24 Page 2 of 4

 - 2 -

Important rules:

• Access is by key, e.g.
 google_price = stock_prices_dict["GOOGL"]

• Keys are distinct (i.e. no duplicate keys)
• Key-value pairs are not stored in any specific order.
• Keys must be of an immutable type (e.g. int, string, tuple).
• Value can be of any type.
• Create a dictionary by using curly braces{} and listing key:value pairs separated by a comma:

dict = {} # Create an empty dictionary
dict = {"john":40, "peter":45} # Create a dictionary

• To add an entry to a dictionary: dictionary[key] = value, e.g.

dict["susan"] = 50

• To delete an entry from a dictionary, use del dictionary[key]

• To check if a key is in the dictionary: in

PRACTICE PROBLEMS

1. Experiment with adding and modifying values in the dictionaries in dictDemo.py
2. Define a function with no parameters, which reads people’s names and an associated

number (e.g. distance traveled to work), until user enters an empty string and creates
and returns a dictionary of entries name :distance.

3. Assume the same email can be entered more than once – change the program
a) to keep only the first number entered with the repeated email,
b) to keep all numbers

Method(params):returns Description

d.keys():dict_keys Returns a sequence of keys.
d.values():dict_values Returns a sequence of values.
d.items():dict_items Returns a sequence of tuples (key, value).
d.clear(): None Deletes all entries.
d[key]
d.get(key): value

Returns the value for the key.

d.pop(key): value Removes the entry for the key and returns its value.

Examples:
- how to iterate over dictionaries

for key in dict.keys(): Iterate through the keys of the dictionary

for key in sorted(dict.keys()): Iterate through the keys of the dictionary in
sorted order

for value in dict.values(): Iterate through the values of the dictionary

Handout 8 CS230 – Introduction to Programming with Python–Spring’24 Page 3 of 4

 - 3 -

for key, value in dict.items():
for itemTuple in dict.items():

Iterate through the key/value pairs of the
dictionary

- often helps to turn the keys or values into lists, e.g. lst = list(dict.keys())

PRACTICE PROBLEMS

4. Create a function within dictDemo.py to do each of the following
a. Compute the max stock price and print out the name of stock(s) with that price
b. Compute and print the total sales from sales_data_dict
c. Add a record in sales_data_dict for April, with value [100, 200]
d. Add a record in sales_by_rep_data_dict for March reflecting sales by Amy of

$3000
e. Print out monthly sales totals based on sales_by_rep_data_dict
f. Crate a sorted list of values in the code_dict.

5. Add code to program developed in problem 2 to find the names of the people who

travels more than an average distance (assuming there is one such person).

6. Implement with a dictionary: File weeklyTasks.txt has day names followed by task
descriptions:
Mon -- office hours
Tue – meeting
Mon – research meeting
Wed - classes
Thu -- office hours
Fri – meetings
Thu – faculty meeting
Fri – paper deadline

Create a program which will
A. read the weeklyTasks.txt file, collecting all tasks for a day under the same

dictionary entry, so, for example, the value for Mon would be a list ["office
hours", "research meeting"]
This functionality should be implemented in a function createDictFromFile(),
which must be passed a path to a file as a parameter, and returns the dictionary.

B. Ask the user to specify the day, then retrieve and print the day’s task according to
the constructed dictionary.

This functionality should be implemented in a function displayTask(), which must
be passed the dictionary associating days with tasks, as a parameter, and runs the
loop displaying the tasks for the user’s specified day.

Include a main function that starts the program and calls the two functions in A,B,
appropriately.

Handout 8 CS230 – Introduction to Programming with Python–Spring’24 Page 4 of 4

 - 4 -

SET

A set is an unordered collection with no duplicate elements. Sets are mutable, supporting add/remove/
Basic uses include membership testing and eliminating duplicate entries.
Set objects also support mathematical operations like union, intersection, difference, and symmetric
difference.

Create sets using curly braces {} or the set() function .
Note: to create an empty set you have to use set(), not {}; the latter creates an empty dictionary.

To eliminate duplicates from any collection c – create a set out of it, calling set(c)
Examples:

>>> lst = [1,2,3,3,3,2,1]
>>> set(lst)
{1, 2, 3}

>>> words = "To be or not to be".lower().split()
['to', 'be', 'or', 'not', 'to', 'be']
>>> distinctWords = set(words)
{'be', 'not', 'or', 'to'}
>>> sorted(distinctWords)
['be', 'not', 'or', 'to']

Operations on sets: in, not in, len(), max(), min()
Set operations as methods: intersection, union, difference
Set operations as operations: &, |, -

method operation description
a.union(b) a | b Set of items in a or b
a.intersection(b) a & b Set of items in both a and b
a.difference(b) a - b Set of items in a that are not in b

 Set-modifying methods:
 s.add (e): add element e to set s.
 s.remove (e): remove element e from set s; error if e is not in s.
 s.discard (e): remove element e from set s, if it is present.
 s.clear() removes all elements from s

Examples:

>>> set1 = {'green', 'blue', 'red'}
>>> set2 = {'green', 'blue', 'yellow'}
>>> set1.union(set2)
{'blue', 'red', 'yellow', 'green'}
>>> set1 | set2
{'blue', 'red', 'yellow', 'green'}

>>> set1.intersection(set2)
{'blue', 'green'}
>>> set1 & set2
{'blue', 'green'}

https://www.programiz.com/python-programming/methods/tuple/count
https://www.programiz.com/python-programming/methods/tuple/count
https://www.programiz.com/python-programming/methods/tuple/count

	Handout 8
	Dictionaries. Sets.
	Dictionary
	Practice problemS
	Practice problemS
	Set

