
Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 1 of 7

 - 1 -

Handout 1
Introduction to Python programming language.
Basic data types and arithmetical operations.

Input/output operations.

Python – a general-purpose programming language

• Created in 1990 by Guido van Rossum, in Netherlands
• Interpreted language, originally created as a middle-ground between scripting languages and C
• The core of the standard interpreter is implemented in C
• Quickly gained popularity, volunteers built multiple packages extending language capabilities
• Developed and maintained by volunteers, distributed for free by Python Software Foundation
• Python 2 and Python 3 are two different versions not compatible with each other.

 We will use Python 3, although it is possible to have both versions installed on your
computer.

Illustration by Jake VanderPlas

Important features of Python

• Interpreted
• Easily extendable
• Very versatile
• ‘easy to use’
• Uses whitespace to structure code
• Every data value is an object

Programming

https://speakerdeck.com/jakevdp/pydata-101?slide=35

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 2 of 7

 - 2 -

FIRST EXAMPLE

'''
Example demonstrates
1. getting input as a string and converting it into a numbers
2. simple output using print
'''

print("Greetings, welcome to CS230!")
dayStr = input("What day is it today?")
print (dayStr)

peopleStr = input("How many people are there in class?")
numPeople = int (peopleStr) # convert string into an integer number

print("There are ", numPeople, "in class on ", dayStr)

print("If one more person comes in, there will be ",
 numPeople + 1 , "people")

Components of the program

Comments: # for a single line, till the end of line

''' paragraph-comments

Start a multiple line comment with three quotations
 End it with three quotations

'''

Punctuation and other grammar

 Python is sensitive to white space – indentation is used to indicate nesting of blocks

(where other languages use {} or other blog begin-end statements)
Statements in the same block must be indented in the same way.

 a “;” is needed to indicate the end of a statement only if there are multiple statements

on the same line, e.g.
a = 4; b = 5

 \ is a line continuation symbol

Variable - is a named location to store data

• Python is dynamically typed, meaning a variable type is not declared, it is
dynamically inferred based on the value it points to, and a variable can be
assigned any type of values at any point.

o Avoid changing the type of value stored in a variable to avoid errors!
Indicate the data type in name for easy understanding

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 3 of 7

 - 3 -

DATA TYPES AND VALUES

Python has a range of built-in types.

Numeric built-in types: int, float

 have no range limit, i.e. can represent an arbitrary large or small number.

Text built-in type: str

'''Demo of built-in types'''

 # numeric types: int, float, complex
print (3, 'has type', type(3))
print (-4.5 , 'has type', type(-4.5))

 # have no range limit
a = 30000000000000000000000000000+1
print (a, 'has type', type(a))
print (1/a, 'has type' , type(1/a))

print ('\nStrings --')
 # str type
print (type('abc'))
print (type('a'))
print (type("also a string"))

KEYBOARD INPUT

input(‘prompt’) – input function, displays prompt specified as a parameter and returns the
string of characters entered by the user.

To convert user input from str to another type, use

- Type conversion functions (int(), float()) or eval() function

ASSIGNMENT OPERATOR =

Used to set, or assign a variable is to store a given value in the location denoted by the
variable name . Not the same as equality in algebra, It means -
 “Store the value of the expression on the right side to the variable on the left side.”

Can have any expression on the right hand side of =

x = 1 # Assign 1 to x
x = x + 1
i = j = k = 1

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 4 of 7

 - 4 -

Simultaneous assignment: var1 , var2, ..., varn = exp1, exp2, ..., expn
 means: var1 = exp1; var2 = exp2; …varn=expn

x,y = 1, 3 # Assign 1 to x, 3 to y
x,y = y, x # Swap values stored in x and y

ARITHMETIC OPERATORS:

 +, -, *, /, //, %, (), **

(1) integer division: results from dividing one int by another. Returns whole number

quotient, ignoring remainder (truncates).
 21 // 4 = ? 7 // 2 = ?

(2) %: modulus, or remainder.
21 % 4 = ? 8 % 2 = ?

(3) ** - exponentiation.
3** 2 = ?

Practice: what is the value of z in the following?

 x = 7; y = 3;
 z = (x//y)*y + x%y

Order of precedence (elements in the same row have the same precedence):

()
+(unary) –(unary)
* / // %
+ -
= (assignment)

ROUNDING NUMBERS AND OTHER MATH FUNCTIONS

round (numberToRound)
round (numberToRound, decimalDigits) round (numberToRound, [decimalDigits])

- Note, [] denote an optional parameter to a function.

val = 7.540638
int(val) returns 7
round(val) returns 8
round(val,1) returns 7.5
round(val,2) returns 7.54

Functions min(), max(), sum() can be used on numbers and sequences.

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 5 of 7

 - 5 -

FORMATTING NUMBERS AND STRINGS

format(item, format-specifier) returns a string with item formatted according to
format-specifier

item is a number or a string, format-specifier is a string using special formatting instructions:

f float s string d decimal int x hexadecimal int b binary int
 % percentage < left-justified > right-justified

s1 = 'hello, world'
center, left, right justify
print (s1.rjust(30))
print (s1.center(30))
print (s1.ljust(30))

control number of digits AND
center, right, left justify
print (format (123.5667, '^30f'))
print (format (123.5667, '>30.2f'))
print (format (123.5667, '<30.0f'))

A COUPLE OF WORDS ABOUT PRINT()

Function print(), by default

- uses a space to separate the components, listed as its arguments,
- places an end of line character to the end of the printed line, so the next print

appears on the new line.

To change these two behaviors, you can use optional parameters end and sep
 end - defines the ending character

sep – defines the separator between the components.

print ('one', 'two', 'three'); print ('four'); 
one two three
four

 10 . 2 f

print(format(57.467657, '10.2f'))

print(format(12345678.923, '10.2f'))

print(format(57.4, '10.2f'))

print(format(57, '10.2f'))

field width

precision

conversion code

format specifier

□□□□□57.47
12345678.92
□□□□□57.40
□□□□□57.00

10

 hello, world
 hello, world
hello, world

 123.566700
 123.57
124

30 characters

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 6 of 7

 - 6 -

print ('one', 'two', 'three', sep = "", end = " ")
print ('four')


onetwothree four

STYLE GUIDELINES

Readability and understandability of code are as important as its correctness. The following
style guidelines specify how to achieve readability:

Commenting
- Include introductory comments listing the name of the author and a description of the

purpose of the program.
- Introduce each major stage of an algorithm in a summary form, so that the reader would not

have to read the details code in order to grasp the general idea.
- Comment any code that may be difficult to follow and would benefit from explanatory text.
- Be concise.

Naming and naming conventions
- Use variable names that reflect the purpose of the variable, and add comments if more

information would be helpful (for example, if a variable has a valid data range, that should
be noted in a comment). Likewise, other names you choose later on for your functions and
modules should reflect its purpose. Note that the Refactoring  Rename feature of Eclipse
will rename all occurrences of a specified variable,

- Start variable and function names with lower case letters, e.g. second, degreesCelcius,
numPeopleInClass

- Use all capitals for named constants, e.g. INTEREST_RATE, PI, MIN_WAGE, etc.

Structuring your code (these requirements will become clear in time)
- Subdivide your program into modules of manageable size (functions, classes, methods)

and use white space as appropriate to separate logically separate pieces of code and
functionality.

- Simple code is easier to write, debug and understand, therefore it is less prone to error.
- Avoid global variables and do not change the type of value stored in a variable. This will

reduce the potential for hard-to-find errors in your code.

DEVELOP THE PROGRAM BY

- identifying the INPUT, OUTPUT and PROGRAM DATA,
- outlining the algorithm and creating test cases,
- implementing the algorithm,
- testing and debugging your code.

Handout 1 CS230 – Introduction to Programming with Python–Spring’23 Page 7 of 7

 - 7 -

PRACTICE PROBLEMS:

1. User will enter number of hours worked by an employee. Assuming the hourly pay rate
of $15.50 and 5% tax that must be withheld from the gross amount, compute and
display the gross and net amount due to an employee.

2. User will enter the number of people in a class. Your program should calculate and
display how many full 4-person teams can be formed and how many people will
possibly form a smaller team.

3. A university enrolled 1027 students in 2021 and 1109 students in 2022. Calculate the
percentage of the increase in student population from 2021 to 2022.

4. Given the start and end of a class in hours and minutes, compute when a 10 minute
break should start and end, if it is supposed to be exactly in the middle of the class.
Hint: convert all time to minutes to simplify the calculation

	Handout 1
	Introduction to Python programming language.
	Basic data types and arithmetical operations.
	Input/output operations.
	First example
	Data types and values
	Keyboard INPUT
	ASSIGNMENT OPERATOR =
	Arithmetic Operators:
	Rounding numbers and other math functions
	Formatting numbers and strings
	A couple of words about print()
	style guidelines
	Develop the program by
	Practice problems:

