
UML Examples
THE CLASS SYMBOL REPRESENTS THE TEMPLATE FOR OBJECTS OF THIS CLASS

In UML-2 class diagrams there are no “object”
symbols. The Class symbol is used to represent any
and all possible instances of that “kind” of object in
the drawing.

The Class symbol captures four important
concepts: 1) that the class is either concrete or
abstract, 2) what data attribute variables will all
objects of this class have values for, 3) what services
will every object of this class be able to perform and
4) what name best captures the stakeholders’
understanding of this class’s role in the model.
Consider the following paragraph documenting the
stakeholders’ understanding of a domain concept.

“The college records information about every
student including their name, their local and home
address and phone numbers. The college also records
their ‘class level’ (i.e. first semester freshman, second
semester freshman, . . . second semester senior) and
their academic major and minor disciplines. Every
student is expected to be able to pay tuition, register
for courses and take exams.”

In this example, an instance of “student”
represents the information the college records about
a “real” student. The data elements are modeled as
data attribute variables in the second pane of the
symbol. Each of the “actions” expected of a student
is modeled as a “service” in the third pane. The name
of the Class seems best served by “Student,” a
singular noun most often used to refer to one of the
many persons enrolled in the college taking courses.

Notice that the name of the Class is not
specified in an ITALIC font and therefore this Class
is concrete meaning that actual objects, instances of
Class Student, can / will exist in this modeling world.
In order to model an Abstract Class (ITALIC font),
there would be some explicit indication that no
objects of this Class would exist (or be allowed) such
as “this is an abstraction for the specific Classes of

students that will exist (e.g. undergraduate student or
graduate student).

The syntax for naming attributes and services is
intended to make the names as readable and
understandable as possible. The example above uses
two different techniques: 1) use an underscore to
separate words in a “multiple-word” name or
2) capitalize the first letter of what would otherwise
be a separate word if you omit underscores.

Consider the example of an abstract class that
follows on the next page. . .

UML-2 SYNTAX EXAMPLES - CLASS
 FEBRUARY 18, 2009

 ©2009, Les Waguespack, Ph.D.
 PAGE 1

Student

pay_tuition
registerForCourse
take_exam

name
localAddress
localPhone
home_address
home_phone
class_level
major
minor

In this example the “business
rule” indicates that instances of
“plain student” will not exist in this
model and therefore the Student
Class is ABSTRACT (ITALIC font).
In general there is no use for an
abstract class unless there are “child”
classes that it parents. In this case
there are two: one for undergraduate
students and the other for graduate
students. Notice that none of the
data attribute variables of the parent
class (Student) are repeated in the
symbols for the child classes. But,
since each is a child class of the
Student Class all the data variable
attributes of Student are defined for
each child class as well. Every
service name in the parent class
must also be supported by each
child class.

The only
reason for
having child
(specialization)
classes is that
there is some
definition in the
child class that
is not
completed by
the inherited
attributes and
services of the
parent class. In
this example
there are additional data attribute variables in each
of the child classes as well as additional services not
found in the parent. If only one of the attributes or
services needs to be added to accurately define a
“special kind of student” then a child class is
appropriate!

Notice that there is one service name in
UndergraduateStudent that is the same as a
service name in Student. That’s because the
service name in Student is in ITALICS and
is therefore an Abstract Service – which
means that any child class of Student must
define its own special method, “HOW,”
that payTuition service is implemented.
This technique ensures that any child of
Student “knows how to payTuition.”

A second service name in the
GraduateStudent class is the same as a
service name indicated for the parent class.
In this case the repeated service name
indicates that although Graduate_Student
provides a concrete (not abstract) service
“registerForCourse” the exact steps with

which it accomplishes the service (the “HOW”) is
explicitly different in the child class
and is denoted by repeating the

service name. This
indicates that the
method of
implementing the
service is
“OVERRIDDEN” in
the child class. Since
the service name is
omitted in the
UndergraduateStudent
class that indicates
that whatever method
for implementing the
service was defined in
the Student Class is
exactly the same
method that every
instance of
UndergraduateStudent
will apply.

UML-2 SYNTAX EXAMPLES - CLASS
 FEBRUARY 18, 2009

 ©2009, Les Waguespack, Ph.D.
 PAGE 2

Student

payTuition
registerForCourse
takeExam

name
localAddress
localPhone
homeAddress
homePhone

UndergraduateStudent

payTuition
voteForSGAPresident

ugMajor
ugMinor

GraduateStudent

payTuition
registerForCourse
publishThesis
gradeUGHomework

gradMajor
gradConcentration
researchTopic
ugDegree

