
UML Guidelines
Abstract and Concrete Classes
Wi! there be instances of the class in the modeling world?

A Concrete Class indicates the existence of actual instances
of this form in the modeling context while

Abstract Class alone is a
structuring tool to
capture only a similarity
between templates
without the existence of
these “abstractions”
actually occurring. The
italicized class name is

the indicator of the abstract class. A non-italicized class name
represents a concrete class for which there will be instances with
values found in the modeling domain.

Inheritance: Parent / Child
How are the classes the same and how
are they different?

Generalization /
Specialization is indicated with
the “triangle” symbol over the
connecting line between the
bottom of the parent class (above)
and the top of the child class
(below) as shown in the insert. If
there is more than one child each is
hung on the horizontal connector.
Inheritance flows from top to
bottom. Notice that parent or child
“classes” involved in “gen/spec” may themselves be either

Abstract or Concrete
Classes. Also notice that
the relationship is
between the “class”
nature of these symbols
rather than the
“instances” that may
occur.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2
 FEBRUARY 3, 2007

 ©2007, Les Waguespack, Ph.D.
 PAGE 1

Why Guidelines?

In order for your documenta-
tion to be as useful as possible
you need to be careful to use
the diagraming discipline con-
sistently. Diagrams are an-
other form of “language” that
you’re using to communicate
your ideas. If you were using
a CASE tool to draw your dia-
grams you wouldn’t be able to
use bad “syntax.” You might
be able to make “logical” er-
rors, but not syntax errors. If
you’re drawing these diagrams
by hand or with a simple
drawing tool you must be
more careful to make your
diagrams “syntactically” cor-
rect.
Here are some guidelines for
drawing your diagrams that
will make them more easily
readable by your team mates
and stakeholders.

- Professor Waguespac$

Person

payParkingFine

idNumber

name

address

phone

Student

payTuition

attendClass

major

minor

classCode

Teacher

teachClass

administerExam

officeNumber

department

Student

payTuition

attendClass

payParkingFine

idNumber

name

address

phone

major

minor

classCode

Teacher

teachClass

administerExam

payParkingFine

idNumber

name

address

phone

officeNumber

department

Person

idNumber

name

address

phone

payParkingFine

Student

payTuition

attendClass

major

minor

classCode

StaffMember

teachClass

administerExam

officeNumber

department

StudentTeacher

supervisor

OJTStudent

assignedParking

Waguespackism!

Person

payParkingFine

idNumber

name

address

phone

Student

payTuition

attendClass

major

minor

classCode

Teacher

teachClass

administerExam

officeNumber

department

Student

payTuition

attendClass

payParkingFine

idNumber

name

address

phone

major

minor

classCode

Teacher

teachClass

administerExam

payParkingFine

idNumber

name

address

phone

officeNumber

department

WHOLE / PART: COMPOSITION AND AGGREGATION: “OBJECTS NEED EACH OTHER!”

Although the Concrete Class depicts all the
instances of the objects derived from this class
in the problem space, it may be appropriate to
indicate that there is some kind of collection
object which is responsible for “finding,”
“enumerating,” or “creating / destroying”
individual member objects. For this purpose the
diamond symbol is placed over the connecting
line between the bottom of the “whole” down to
the top of the “part.” Whole/Part is a
relationship between objects rather than classes.
If this relationship carries an “existence” flavor,
the diamond is black indicating a Composition.
That is that the whole would not exist if it were
not for the parts and / or vice versa. The parts
“belong to” the whole and would probably not
be found in the problem space except in their
role as parts. If the collection relationship does
not reach the level of “existence,” the diamond
may be left white indicating an Aggregation.

 Therefore there must be an object to
connect to in the whole and objects to play the
role of parts. If the whole is not a concrete class
then it must be a generalization of other
concrete classes. Rather than draw each child
class as a whole, you may choose to draw the
abstract parent class as a whole from which the
parts are connected as in the following example.

In this case the “Whole class” may own a
collection of “Part One’s” and “Part Two’s.” And

any child classes of “Whole class” would have a
collection of “Part One’s” and could have a
collection of “Part Two’s.”

In a similar fashion, a “part” in the
relationship may be an abstract rather than a
concrete class. But, it must have a concrete
child class down the line that would be the
actual member of the “Whole’s” collection. In
the documentation the collection may have
additional defined characteristics such as
“ordered collection” or “indexed collection”
indicating to the reader that the collection may
be easily searched or enumerated if need be.

NOTICE that the cardinality (count
constraints) on the vertical connection between
whole and part indicates the constraints. The
number next to the whole indicates the number
of whole instances to which a part may “belong.”
The number next to the part is the number of

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2
 FEBRUARY 3, 2007

 ©2007, Les Waguespack, Ph.D.
 PAGE 2

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

SpecialWhole

additionalServices or

distinctBehavior

additionalAttributes

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

composition aggregation

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

SpecialWhole

additionalServices or

distinctBehavior

additionalAttributes

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

composition aggregation

parts which may belong to each whole. The part
cardinality may be [0, 1], [1, n], or [n, m]
according to the business rules of the
relationship. The whole cardinality in a
composition is usually either [1] or [0,1] since

a part can be “owned” by only one whole. Any
exception to this should be carefully
documented.

INSTANCE CONNECTIONS: “OBJECTS JUST KNOW ABOUT EACH OTHER!”

Instance Connections (also called Simple
Associations) depict relationships between
objects that are less restrictive than
composition or aggregation. Both
participants in an instance connection would
“exist” regardless of the other. In this case Item
A is connected to from 0 to m instances of Item
B and Item B is associated with 0 or 1 Item A.
[1,1], [1,m] and [m, n] are all possible including
occasions when the 1’s may be 0’s as well. These
cardinalities would be determined by the
business rules of the problem space. Since
neither of these objects “owns” the other the
connecting line is suggested to attach at either
side of each symbol clearly distinguishing the
relationship from that of whole / part.

Simple Associations are usually needed to
depict “awareness” of one object for another
when there is no other awareness such as

composition or
aggregation.
For instance, in
order for an object
to send a message
to another object
there must be
some way of
“finding” it - either
through a whole/
part relationship
or an instance
connection.
When you draw
message
connections check
to see if the sender
would have a way

to find the receiver to whom the message is sent.

CARDINALITY: COMPOSITION, AGGREGATION, INSTANCE CONNECTION: WHAT
COUNTS?

All associations (including composition and
aggregation) require explicit specification of
cardinality. The counts are placed nearest the
class whose cardinality is indicated. Although all
three nominal cardinalities are legal (1-1, 1-m,
and m-m), there are virtually no circumstances
where (m-m) improves understanding of the
object model. Using “normalized” cardinality
(1-1, 1-m) also improves your chances of
recognizing when a class is really a “container”

rather than a collection of instances. For
example to aggregate transcripts to students
(1-1) means that each student has one transcript
object. If you describe a transcript object as a
record of a course with a grade, that also means
that “each student takes one and only one
course!” Thaťs probably not what you intended!
Being explicit every time with cardinality helps
to avoid these logical oversights.

SERVICES: SERVICES BELONG IN THE OBJECTS RESPONSIBLE FOR PROVIDING THEM

Services determine the actions in an object
model. The service resides in the object that is
responsible for providing the behavior to the

model whole. As such, service names should
always be command verbs that are “spoken” by
the sending object. If the action required is to

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2
 FEBRUARY 3, 2007

 ©2007, Les Waguespack, Ph.D.
 PAGE 3

Degree

degreeAudit

name

office

phoneNumber

abbreviation

RequiredCourse

checkPrerequisite

idNumber

name

address

phone

1

1, m

CourseSection

enroll

sectionNumber

building

classroom

time

Student

payParkingFine

idNumber

name

address

phone

0, 5

0, 35

ItemA

addCourse

deleteCourse

year

term

ItemB

payParkingFine

idNumber

name

address

phone

0. 1

0, m

Now we’re talking about objects derived from these classes!

(order by?)

respond with some information (e.g. get a value
from an attribute of the receiving object) then
the service name may be seen more like the
action / inquiry of the sending object (e.g.
“GetChar,” or “IsCharEqual”) but, the service
still must reside in the receiving object.

Since child classes inherit all the services and
attributes of their parent class, you may have a
choice of where to place a service in a “family
tree.” Generally, you should place the service as
high in the tree as it denotes a behavior familiar
to all the child classes below it. If a child class
needs to perform the familiar behavior
somewhat differently, then the implementation
of the service will be overridden in that child
class. But since the service name (name and any
parameters needed) is identical to that of the
parent class, a client object sending a message to
the object will not have to “distinguish” the
objecťs class from that of its parent. And thus
the client will be exercising the polymorphism
that the identically named services provide.

Service names reside in the class that
performs that behavior. To perform a behavior
the object must either have attributes or direct
access to companion classes that enable
accomplishing that behavior. Thaťs why service
names are present tense imperative; so you can
“address the object using the service name as a
command.” When you place a service name in a
class, ask yourself, “Does an object of this class
know how to perform this behavior?” and “Is
this behavior really this class’s responsibility?”

Services that create objects (i.e. when a new
member is created to add to the “parts” of a
whole/part relationship) should be placed in
objects that are superior to the objects to be
created. A superior object would be one that
already exists to create the new object. So, parts
should not “create themselves.,” but rather
might be better created by their whole, or at
least by an object that otherwise already exists.
It is however, common for a new object once
created by its “owner” – to have a service that
initializes and populates the values of its
attributes.

Services are defined in the class that is
responsible for the behavior they accomplish.
To that extent, the description of a service
should reflect the encapsulated responsibility of
the hosting object. These descriptions should
not refer to the objects that invoke them and
should refer to other objects only if those
objects’ services are needed to accomplish this
objecťs behavior. To that end, service
descriptions are quite modular and thus easily
reusable because the “intent” of the object that
invokes this service is not germane to the service
being provided. Service descriptions do not
need to be algorithmic, but they must identify
“what happens” to accomplish the behavior:
setting attributes, sending messages to other
objects, returning calculated results, etc.

SCENARIO, USE CASE, ACTIVITY DIAGRAM, SEQUENCE DIAGRAM, OBJECT MODELS IN
ANALYSIS

Scenarios are stories collected during
requirements analysis that attempt to gather a
“broad” understanding of the problem domain
and the meaningful elements and events that
exist there. Scenarios are usually text
descriptions based on stakeholder interviews;
stories about whaťs going on in the problem
domain of interest. They often correspond to
the direct contact with domain experts during

the interviewing process. They are the source of
domain experience that is distilled and
formalized in the modeling process.

UML separates out class structure and
relationships, object interaction through
messages, and behavior externally visible to a
user in several different diagrams. Use cases
attempt to “homogenize” the terms, actions, and
actors, allowing the analyst and users to converse

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2
 FEBRUARY 3, 2007

 ©2007, Les Waguespack, Ph.D.
 PAGE 4

in the same “glossary” of domain labels. The
actions in the use cases should be recognizable
in the object model, perhaps not as a single
service, but as initiated by some particular
object in the model.

 The activity diagram is a means of
visualizing the actions that occur in the
modeling domain.

They may represent the action sequence that
accomplishes a use case from the actors’
perspective or they may represent the detailed
steps taken to implement the behavior that is
indicated by a service name in a class definition.
Activity diagrams are most easily read when the
flow of control proceeds generally from top to
bottom and from left to right in the diagram.
The action nodes may represent a single atomic
computation or a more complex collection of
steps depending on the level of abstraction that
the diagram is intended to represent.

The sequence diagram pulls together the
objects and actions laying out the “time line” of
messages/responses and (when detailed the
exceptions, “extensions”) that occur in
completing a domain visible action. Because
this is a domain descriptive modeling activity
(focused primarily on requirements for behavior
in the problem domain) the modeling artifacts
are primarily those visible to the users (actors)
and thus do not focus on files, nodes, servers,
and components that might be the case in the
design or implementation stage. In analysis the
focus is on “whaťs happening in the problem
domain.”

In the end it should be possible to follow a
sequence diagram to “trace” the actions of
the players defined in the class diagram taken
to result in the “actor visible outcomes”
described in a use case. Eventually the use case
becomes the final “testing” pattern to validate
that the object model defines all the necessary
objects and their interacting relationships and
behaviors.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2
 FEBRUARY 3, 2007

 ©2007, Les Waguespack, Ph.D.
 PAGE 5

adapted from: Arlow & Neustadt p.287

Diagram Name
precondition: letter topic known

postcondition: letter sent to address

FirstAction

SecondAction

<<localPrecondition>>

Is address known?

FinalAction

[address is known]

else

merge
node

guard
condition

keyword

optional
decision
criteria

T
im
e

anObject:ExampleClass anotherObject:OtherClass

instance or
classifier role

1.1: doSomething (this, that)

object life linemessage

message flow

point of activation / creation

focus of control
(activation)

optional result

