
UML Checklist
Abstract and Concrete Classes
Wi! there be instances of the class in the modeling world?

(1) A Concrete Class indicates the existence of actual instances
of this form in the modeling context while Abstract Class alone is a
structuring tool to capture only a similarity between templates
without the existence of these “abstractions”

actually occurring. The
italicized class name is
the indicator of the
abstract class. A non-
italicized class name
represents a concrete
class for which there
will be instances with

values found in the modeling domain.

Inheritance: Parent / Child
How are the classes the same and how are they different?

(2) Generalization / Specialization is indicated with the
“triangle” symbol over the connecting line
between the bottom of the parent class (above)
and the top of the child class (below) as shown
in the insert. If there is more than one child each
is hung on the horizontal connector. Inheritance
flows from top to bottom. Notice that parent or
child “classes” involved in “gen/spec” may
themselves be either Abstract or Concrete
Classes. Also notice that the relationship is
between the “class” nature of these symbols
rather than the “instances” that may occur.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 1

Person

payParkingFine

idNumber

name

address

phone

Student

payTuition

attendClass

major

minor

classCode

Teacher

teachClass

administerExam

officeNumber

department

Student

payTuition

attendClass

payParkingFine

idNumber

name

address

phone

major

minor

classCode

Teacher

teachClass

administerExam

payParkingFine

idNumber

name

address

phone

officeNumber

department

Person

idNumber

name

address

phone

payParkingFine

Student

payTuition

attendClass

major

minor

classCode

StaffMember

teachClass

administerExam

officeNumber

department

StudentTeacher

supervisor

OJTStudent

assignedParking

Waguespackism!

Person

payParkingFine

idNumber

name

address

phone

Student

payTuition

attendClass

major

minor

classCode

Teacher

teachClass

administerExam

officeNumber

department

Student

payTuition

attendClass

payParkingFine

idNumber

name

address

phone

major

minor

classCode

Teacher

teachClass

administerExam

payParkingFine

idNumber

name

address

phone

officeNumber

department

Checklist?

Many of the criticisms
that are appropriate
to drawing UML
models are very
common. I’ve pre-
pared this special
version of the UML
Diagramming Guide-
lines with numbering
“(n)” of the sections
that most often
should be reviewed
to correct / improve a
model.

Please read the para-
graphs following the
“comment number”
in this document and
consider how you
may have used or
misused the guidance
indicated there.

There’s a quick review
list of the numbered
items on the last page.

- Professor Waguespack

WHOLE / PART: COMPOSITION AND AGGREGATION: “OBJECTS NEED EACH OTHER!”

Although the Concrete Class depicts all the
instances of the objects derived from this class
in the problem space, it may be appropriate to
indicate that there is some kind of collection
object which is responsible for “finding,”
“enumerating,” or “creating / destroying”
individual member objects. For this purpose the
diamond symbol is placed over the connecting
line between the bottom of the “whole” down to
the top of the “part.” (3) Whole/Part is a
relationship between objects rather than classes.
If this relationship carries an “existence” flavor,
the diamond is black indicating a Composition.
That is that the whole would not exist if it were
not for the parts and / or vice versa. The parts

“belong to” the whole and would probably not
be found in the problem space except in their
role as parts. If the collection relationship does
not reach the level of “existence,” the diamond
may be left white indicating an Aggregation.

 Therefore there must be an object to
connect to in the whole and objects to play the
role of parts. (4) If the whole is not a concrete
class then it must be a generalization of other
concrete classes. Rather than draw each child
class as a whole, you may choose to draw the

abstract parent class as a whole from which the
parts are connected as in the following example.

In this case the “Whole class” may own a
collection of “Part One’s” and “Part Two’s.” And
any child classes of “Whole class” would have a
collection of “Part One’s” and could have a
collection of “Part Two’s.”

In a similar fashion, a “part” in the
relationship may be an abstract rather than a
concrete class. But, it must have a concrete
child class down the line that would be the
actual member of the “Whole’s” collection. In
the documentation the collection may have
additional defined characteristics such as
“ordered collection” or “indexed collection”
indicating to the reader that the collection may
be easily searched or enumerated if need be.

NOTICE that the cardinality (count
constraints) on the vertical connection between

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 2

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

SpecialWhole

additionalServices or

distinctBehavior

additionalAttributes

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

composition aggregation

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

SpecialWhole

additionalServices or

distinctBehavior

additionalAttributes

Whole

services

attributes

PartOne

services

attributes

PartTwo

services

attributes

0, 1

0, n

1

1, m

composition aggregation

whole and part indicates the constraints. The
number next to the whole indicates the number
of whole instances to which a part may “belong.”
The number next to the part is the number of
parts which may belong to each whole. The part
cardinality may be [0, 1], [1, n], or [n, m]
according to the business rules of the

relationship. (5) The whole cardinality in a
composition is usually either [1] or [0,1] since a
part can be “owned” by only one whole. Any
exception to this should be carefully
documented.

INSTANCE CONNECTIONS: “OBJECTS JUST KNOW ABOUT EACH OTHER!”

Instance Connections (also called Simple
Associations) depict relationships between
objects that are less restrictive than
composition or aggregation. Both
participants in an instance connection would
“exist” regardless of the other. In this case Item
A is connected to from 0 to m instances of Item
B and Item B is associated with 0 or 1 Item A.
[1,1], [1,m] and [m, n] are all possible including
occasions when the 1’s may be 0’s as well. These
cardinalities would be determined by the
business rules of the problem space. (6) Since
neither of these objects “owns” the other the
connecting line is suggested to attach at either
side of each symbol clearly distinguishing the
relationship from that of whole / part.

Simple Associations are usually needed to
depict “awareness” of one object for another
when there is no other awareness such as
composition or aggregation. For instance, in
order for an object to send a message to another
object there must be some way of “finding” it -
either through a whole/part relationship or an

instance connection. When you draw message
connections check to see if the sender would
have a way to find the receiver to whom the
message is sent.

CARDINALITY: COMPOSITION, AGGREGATION, INSTANCE CONNECTION: WHAT
COUNTS?

All associations (including composition and
aggregation) require explicit specification of
cardinality. The counts are placed nearest the
class whose cardinality is indicated. Although all
three nominal cardinalities are legal (1-1, 1-m,
and m-m), there are virtually no circumstances
where (m-m) improves understanding of the
object model. (7) Using “normalized”
cardinality (1-1, 1-m) also improves your chances

of recognizing when a class is really a “container”
rather than a collection of instances. For
example to aggregate transcripts to students (1-1)
means that each student has one transcript
object. If you describe a transcript object as a
record of a course with a grade, that also means
that “each student takes one and only one
course!” That’s probably not what you intended!
Being explicit every time with cardinality helps
to avoid these logical oversights.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 3

Degree

degreeAudit

name

office

phoneNumber

abbreviation

RequiredCourse

checkPrerequisite

idNumber

name

address

phone

1

1, m

CourseSection

enroll

sectionNumber

building

classroom

time

Student

payParkingFine

idNumber

name

address

phone

0, 5

0, 35

ItemA

addCourse

deleteCourse

year

term

ItemB

payParkingFine

idNumber

name

address

phone

0. 1

0, m

Now we’re talking about objects derived from these classes!

(order by?)

SERVICES: SERVICES BELONG IN THE OBJECTS RESPONSIBLE FOR PROVIDING THEM

Services determine the actions in an object
model. (8) The service resides in the object
that is responsible for providing the behavior to
the model whole. (9) As such, service names
should always be command verbs that are
“spoken” by the sending object. If the action
required is to respond with some information
(e.g. get a value from an attribute of the
receiving object) then the service name may be
seen more like the action / inquiry of the
sending object (e.g. “GetChar,” or
“IsCharEqual”) but, the service still must reside
in the receiving object.

Since child classes inherit all the services and
attributes of their parent class, you may have a
choice of where to place a service in a “family
tree.” Generally, you should place the service as
high in the tree as it denotes a behavior familiar
to all the child classes below it. If a child class
needs to perform the familiar behavior
somewhat differently, then the implementation
of the service will be overridden in that child
class. But since the service name (name and any
parameters needed) is identical to that of the
parent class, a client object sending a message to
the object will not have to “distinguish” the
object’s class from that of its parent. And thus
the client will be exercising the polymorphism
that the identically named services provide.

Service names reside in the class that
performs that behavior. To perform a behavior
the object must either have attributes or direct
access to companion classes that enable
accomplishing that behavior. (10) That’s why
service names are present tense imperative; so
you can “address the object using the service

name as a command.” When you place a service
name in a class, ask yourself, “Does an object of
this class know how to perform this behavior?”
and “Is this behavior really this class’s
responsibility?”

(11) Services that create objects (i.e. when a
new member is created to add to the “parts” of a
whole/part relationship) should be placed in
objects that are superior to the objects to be
created. A superior object would be one that
already exists to create the new object. So, parts
should not “create themselves.,” but rather
might be better created by their whole, or at
least by an object that otherwise already exists.
It is however, common for a new object once
created by its “owner” – to have a service that
initializes and populates the values of its
attributes.

(12) Services are defined in the class that is
responsible for the behavior they accomplish.
To that extent, the description of a service
should reflect the encapsulated responsibility of
the hosting object. These descriptions should
not refer to the objects that invoke them and
should refer to other objects only if those
objects’ services are needed to accomplish this
object’s behavior. To that end, service
descriptions are quite modular and thus easily
reusable because the “intent” of the object that
invokes this service is not germane to the service
being provided. (13) Service descriptions do
not need to be algorithmic, but they must
identify “what happens” to accomplish the
behavior: setting attributes, sending messages to
other objects, returning calculated results, etc.

SCENARIO, USE CASE, SEQUENCE DIAGRAM, OBJECT MODELS IN ANALYSIS

Scenarios are stories collected during
requirements analysis that attempt to gather a
“broad” understanding of the problem domain
and the meaningful elements and events that

exist there. Scenarios are usually text
descriptions based on stakeholder interviews;
stories about what’s going on in the problem
domain of interest. They often correspond to

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 4

the direct contact with domain experts during
the interviewing process. They are the source
of domain experience that is distilled and
formalized in the modeling process.

UML separates out class structure and
relationships, object interaction through
messages, and behavior externally visible to a
user in several different diagrams. Use cases
attempt to “homogenize” the terms, actions,
and actors, allowing the analyst and users to
converse in the same “glossary” of domain
labels. The actions in the use cases should be
recognizable in the object model, perhaps not
as a single service, but as initiated by some
particular object in the model.

 The activity diagram is a means of
visualizing the actions that occur in the
modeling domain.

They may represent the action sequence
that accomplishes a use case from the actors’
perspective or they may represent the detailed
steps taken to implement the behavior that is
indicated by a service name in a class
definition. (17) Activity diagrams are most

easily read when the flow of control proceeds
generally from top to bottom and from left to
right in the diagram. The action nodes may
represent a single atomic computation or a
more complex collection of steps depending
on the level of abstraction that the diagram is
intended to represent.

The sequence diagram pulls together the
objects and actions laying out the “time line”
of messages/responses and (when detailed) the
exceptions, “extensions,” that occur in
completing a domain visible action. Because
this is a domain descriptive modeling activity
(focused primarily on requirements for
behavior in the problem domain) the modeling
artifacts are primarily those visible to the users
(actors) and thus do not focus on files, nodes,
servers, and components that might be the
case in the design or implementation stage. In
analysis the focus is on “what’s happening in

the problem domain.”
(18) In the end it should be possible to

follow a sequence diagram to “trace” the
actions of the players defined in the class
diagram taken to result in the “actor visible
outcomes” described in a use case. Eventually
the use case becomes the final “testing”
pattern to validate that the object model
defines all the necessary objects and their
interacting relationships and behaviors.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 5

adapted from: Arlow & Neustadt p.287

Diagram Name
precondition: letter topic known

postcondition: letter sent to address

FirstAction

SecondAction

<<localPrecondition>>

Is address known?

FinalAction

[address is known]

else

merge
node

guard
condition

keyword

optional
decision
criteria

T
im
e

anObject:ExampleClass anotherObject:OtherClass

instance or
classifier role

1.1: doSomething (this, that)

object life linemessage

message flow

point of activation / creation

focus of control
(activation)

optional result

Quick Reference to Comment Numbers
(1) Class name is improperly formed (plural vs.

singular) or incorrectly indicates concrete or
abstract class status. Class name may not effectively
indicate the purpose of the class relative to the
prose description or the prose description is
inadequate.

(2) Generalization/Specialization improperly
formed: incorrect diagram symbol, child not
distinguishable from parent class, attributes
repeated in child.

(3) Whole/Part improperly formed: one or both
classes are not concrete (or have no concrete
children), part cardinality less than 1 or description
is inadequate to explain cardinality.

(4) Parts are best modeled as attached to abstract
parent rather than multiples children of same.

(5) Whole cardinality in whole part is greater
than one or description of relationship is inadequate
to explain the cardinality.

(6) Cardinality indicates that relationship should
be instance connection, consider composition or
aggregation, modify cardinality or clarify
description.

(7) Cardinalities of {m-m} are seldom useful in
information relationships intended for eventual
computer implementation; consider that a class may
be missing that would allow for {1--M} relationships
exclusively.

(8) Service should reside in the class whose
object will perform the behavior when it receives an
appropriate message, re-evaluate the placement of
this service in the model.

(9) Service names must be present tense,
imperative verbs that connote a “command” issued
by the requesting object; use parameters when
appropriate to clarify any information provided by
the requesting object to the receiving.

(10) Service name appears located in a class
that does not have the resources (either in itself or in
objects of classes it has relationships with) to
accomplish the responsibility indicated in the
service name or description.

(11) Object creation requires help from a
“superior” object (for example a whole in a whole/
part relationship in which the object being created
will exist).

(12) Service descriptions should refer only to the
intentions or actions of itself and messages it sends
to help in its immediate responsibility; it should not
refer to the intentions of the objects sending it
messages.

(13) Service descriptions must indicate “what
happens” to accomplish its object’s responsibility
(setting attributes, calculating results, etc.).

(14) The placement of your symbols and
connections makes it difficult to determine what
connects to what; you must find a way to make the
connections more readable; consider moving some
parts / children above their whole / parents while
adjusting the connectors to properly go from bottom
of whole / parent to top of part / child.

(15) Your model does not effectively use the
object paradigm (gen/spec, whole/part
(composition, aggregation, instance connection),
polymorphism, etc.) to model the problem space at
hand.

(16) An attribute is either not atomic or
represents re-calculable results.

(17) Activity flow is difficult to follow and
should be restructured.

(18) Message lines in the sequence diagram
should be labeled with the service name in the
receiver that is invoked by the message. Parameters
may also be appropriate.

OBJECT-ORIENTED MODELING AND ANALYSIS WITH UML-2	
 FEBRUARY 3, 2007

	
 ©2007, Les Waguespack, Ph.D.	
 PAGE 6

