
Checkbook Evaluation Notes!
March 7, 2014!

These notes explain UML model evaluation and usefulness characteristics
consider toward grading UML models. L. J. Waguespack, Ph.D. 

Pat’s Checkbook Usefulness!!
Pat’s checkbook problem is a relatively simple data

intensive business scenario. The real challenge for this
object-modeling exercise is to recognize all those elements
that would be present if you were designing a relational
database representation of Pat’s needs. There are classes
that represent “persistent” information needs like
transactions and tax related income/expense categories
that would have to be modeled almost identically in the
relational paradigm as they need to be in the OO paradigm.!

The thing that makes modeling in the OO paradigm
different is that unlike entities in the relational paradigm,
objects from classes in the OO paradigm are supposed to
have individual behavior responsibilities to go along with the
information that they possess. That requires that you focus
in on the “business rules” (rather than “common practice”)
that explain the interrelationships between business objects
that define what “can happen” in Pat’s checkbook “world”
Some of the challenge is identifying Pat’s perspective on
the information and activities that occur. For example if Pat
doesn’t control the Bank then the model can depict very
little detail about the Bank except those services that it
provides to satisfy Pat’s needs expressed in the scenario.!

So a big part of developing a USEFUL UML business
model is getting into an OO mindset and trying to identify
“which objects know what” and “which objects are
responsible for doing what” to satisfy the business rules in
the scenario provided. To be honest getting really good at
thinking in the OO paradigm takes a lot of practice by both
reading many good UML models as well as debating with
other modelers about the best way to capture scenario
content in classes and relationships. I don’t really expect
everyone at this novice stage of learning OO modeling to
develop excellent UML models, but they should be useful!!

So What Makes a Useful Model?!!
The first dimension of usefulness is syntax. That

means using the UML syntax to express inheritance,
association, message and parameter passing, sequencing,
and synchronization clearly. It means in class diagrams
using the correct diamond on associations where the
cardinality is consistent with the placement of the diamond
on the top or bottom of the connecting line. (Notice “top”
and “bottom” of connecting line since all aggregations and
compositions should be bottom of “whole” class to top of
“part/member” class in the class diagram!) It means in
sequence diagrams being sure the label on message lines
is the service name invoked in the receiving object’s class
and representing conditions and iteration on messages
correctly. It means naming model elements correctly: single
nouns for class names, present tense imperative verbs for
service names, and singular/simple nouns for attributes.!

The second dimension of usefulness is semantics.
Names need to relate seamlessly to the problem scenario
and those names should ALMOST not need a detailed
prose description of its purpose and relevance in the model.
Names of classes should identify individual objects and
each object would have only a single value of each of its
attributes. Any structurally complex model element will
probably be rendered as some form of collection:
aggregation, composition, or simple association. Any class
name that implies a group should probably define the owner
of a collection that includes all the subordinate elements
that compose or make up that group concept.!

The third dimension of usefulness in UML models is
consistency. The concepts depicted in the use case
documentation should be easily perceivable in the class
diagram. All the elements of a sequence diagram should
map seamlessly back to the class diagram: objects of
classes, services in receiver objects, messages between
objects that have some navigation connection through
associations, etc. The prose descriptions should focus only
on what the serving object remembers and knows what to
do so service descriptions should encapsulate each object’s
behavior responsibilities only referring to its own attributes,
parameters in received messages, and objects to which it
directs messages to support its service.!

The fourth dimension of usefulness is completeness.
Does the model retell a cogent “story” of all the
responsibilities and behavior that is mentioned in the
problem scenario. This should be pretty easy to check -
scenario behaviors require sequence diagrams to describe
the accomplishing actors, sender and receiver objects with
relevant class diagram resources to utilize and manipulate.!

So How Do I Evaluate Your Model?!!
I look for model elements that reflect the four

dimensions of usefulness outlined above. I try to locate
model elements that contribute to these dimensions building
a cogent modeling representation of the scenario - usually
reflected by few (if any) annotations on the model. I also try
to identify model elements that seem to defeat achieving
cogency in these dimensions by noting issues of syntax,
semantics, consistency, or completeness by marking
specific items (usually circling/numbering them on the
model and expanding on the perceived deficiency either
directly on the model or on an accompanying grading form).
I make no attempt to identify EVERY questionable element,
but I try to identify indicative elements that should lead you
to find and correct similar deficiencies across the model. It
takes as much as 30 minutes per model for this evaluation.
Because modeling and evaluating models is significantly
subjective, I require at least one preliminary submission to
suggest improvements to help you to refine or improve the
usefulness of your model before final grading. 

Here are some general comments that recurred on the feedback of the Phase II of the
checkbook for you to consider in your final revisions:!
!
1) Your first task is to identify all the core concepts in the problem either by defining

classes that represent the essence of the concept or by defining relationships between
objects of classes demonstrating shared responsibility or cooperation.!
2)The best way to test your model is to read the syntax of your symbols to yourself

“OUT LOUD” and listen to what the symbols “say!” If the reading of the symbols syntax
(class, attributes, services, relationships) matches up with the problem scenario and the
actions needed to satisfy the requirements then you’re on the right track. Usually reading
them “out loud” to yourself will help you catch problems with cardinality (“How many of
these belong to how many of these?) as well as “ownership” (“If one of these goes away do
these related to them go away also?”) and finally inheritance (gen/spec) (“Object of this
child class IS A object of the parent class?”)!
3) Pat’s categories may seem arbitrary (food, rent, entertainment, . . .) but when we

introduce the probability that the checkbook assistant will support tax preparation,
those categories take on a more focused purpose. If Pat’s bright enough to align the
categories with aspects of the tax form’s input requirements, then “keeping track of
expenses” can easily be expanded to track expenses that relate to taxes as well as income
that is taxable.!
4)The whole purpose of defining classes is to identify a framework, a template, of

structure and behavior that allows many individual instances of a concept to be described
only once in the class (e.g. many specific students in the student class, many specific
courses in the course class, etc.). The key is to find a template that lets you plug in any
specific attribute values to depict a specific instance of the class. So, the skill is
“generalization” (how are all this individuals alike in structure [data attribute variables,
and services]). (Did you notice the reference to the OO Ontology! That’s where all these model
concepts come from! Maybe you should take 15 minutes and review that again!)!
5)You have several model examples from the class to use as frameworks for your model

and documentation. The most compact is the last Zoo handout thats posted on the web.
It eliminates redundant terms and highlights the basic elements that your submission
must contain: Class diagram with descriptions for each element (class, attribute, service,
relationship), Use Case’s describing the interaction of Pat with the checkbook assistant,
and Sequence Diagrams to depict the sequence of messages exchanged between objects
in your class diagram demonstrating what ACTIONS occur in what order to complete a
task that satisfies Pat’s Needs. There are also the UML Guidelines and the Association
and Class example handouts not to mention the Fowler text for inspiration!!! Model On!!!

���

Courtesy of one of your classmates!

