
13: CS630 OO Systems Engineering Les Waguespack, 20021

SOFTWARE REUSE
Architecture, Process and

Organization for Business Success

Jacobson, Griss, Jonsson
Addison-Wesley, 1997

Lecture Slides
to Accompany the Text

13: CS630 OO Systems Engineering Les Waguespack, 20022

Software Reuse (part 2)

• Object Oriented Business Engineering
» Business Process Reengineering (BPR) is “the

fundamental rethinking and radical redesign of

business processes to achieve dramatic

improvements in critical, contemporary

measures of performance, such as cost, quality,

service and speed.” (Hammer & Champy 1993,

Hammer & Stanton 1995)

» BPR has risks

- the change process itself

- the technology employed

» The OO paradigm provides a modeling

technology that spans the process and

improves communication and thus “clarity”

Slides adapted from Software Reuse, Ivar Jacobson, Griss, Jonsson,
Addison-Wesley, 1997

13: CS630 OO Systems Engineering Les Waguespack, 20023

BPR Defining the Process.
• Create a BPR directive

» goals, business situation, impetus for change

• Envision the new business
» process & technology opportunity mining

» “best practice” partners & competitors

» goals, objectives of future business processes

• Reverse engineer the existing business
» unify the corporate “self-image”

» identify reengineering target in the “vision”

• Forward engineer the new business
» incrementally develop & describe new systems

• Implement the new business
» start with high success potential aspects

» build momentum, manage risks, build the “team”

13: CS630 OO Systems Engineering Les Waguespack, 20024

Object Modeling the Business
• Model the Business as a System

» a business system represents an organization unit

that we want to understand better in order to

make it more competitive

» a business actor represents a role that someone

or something in the environment can play in

relation to the business

» a business use case is a sequence of work steps

performed in a business system that produces a

result of perceived and measurable value to an

individual actor of the business

• Our OO Use Cases apply directly, but at

the business model level of abstraction

13: CS630 OO Systems Engineering Les Waguespack, 20025

Business model parts
• Business use cases must identify not only

functions but also competencies and

roles that need to be played in the

business process
» case worker represents people with a certain

competency and interact with actors

» internal workers have a certain specialty but

work within the business

» entity object represents a “thing” handled or

used in the business

» work step describes a piece of work a worker

performs

» resource units group persons and information

systems

» competence units group workers their “tools”

13: CS630 OO Systems Engineering Les Waguespack, 20026

Business Models Trace to
System Models

«business model»

Business use case workers

entity objects

Information system
actors and use cases Information system

entity objects, etc.

«trace»
«system model»

13: CS630 OO Systems Engineering Les Waguespack, 20027

Applying BPR to SDLC
• Process and Structure are the key

» effective reuse requires significant software

engineering organization and process change

» the organization must match the system’s

architecture

• Seeking architecture / business harmony
» processes and organization are developed

incrementally
» input from business models drives the evolution

» explicit techniques are used to represent them

» we use the same techniques to model /

represent the reuse business itself!!!

13: CS630 OO Systems Engineering Les Waguespack, 20028

Architectural Style
(system layering)

The Architectural style of a system is the denotation of the
modeling languages used when modeling that system.
(Jacobson et al., 1992).

Application Systems

Business-specific components

Middleware components

System software components

13: CS630 OO Systems Engineering Les Waguespack, 20029

Software Engineering Process (SEP)

• We organize around our products:
» Component System Engineering (CSE) is

organized around each component system

product

» Application System Engineering (ASE) is

organized around each application system

product

» Application Family Engineering (AFE) is

organized around each family of related

applications

Application Systems

Business-specific components

Middleware components

System software components

AFE

ASE

CSE

13: CS630 OO Systems Engineering Les Waguespack, 200210

Reuse Business Processes

Application Family
Engineering

Application System
Engineering

Component System
Engineering

Customer

End User
Manufacturer

Customers request application systems, place requirements on them,
and usually pay for the systems.

End User is someone who will use the application system when it is
installed in the target organization

Manufacturer receives the new version of the application system
when developed, customizes, configures, produces, and delivers
complete applications to the customer.

13: CS630 OO Systems Engineering Les Waguespack, 200211

Customer

End User

Manufacturer

Application System Engineering

Component System
Engineering

application
use case
engineer

application
use case model

application
design model

application
subsystem
engineer

application
tester

application
test model

application
system

lead
architect

layered
design model

facade

component
use case model

component
design model

component use
case engineer

component
subsystem
engineer

component
system

Application Family
Engineering

Reuse Business Processes

13: CS630 OO Systems Engineering Les Waguespack, 200212

Application Systems

Business-specific components

Middleware components

System software components

AFE

ASE

CSE

Reuse Business Processes
- Application Family Engineering (AFE) process

develops and maintains the overall layered

architecture

- Component System Engineering (CSE) process

develops use case, analysis, design,

implementation and test models for a component

system focusing on robust, extendible, and flexible

components

- Application System Engineering (ASE) process

develops use case, analysis, design,

implementation and test models for a specific

application system engineered from components

13: CS630 OO Systems Engineering Les Waguespack, 200213

Application Family Engineering (AFE)

“The process of application family engineering
develops and maintains the layered system,
represented as a superordinate (domain) system with
use case, analysis, design, deployment, and
concurrency test models. Business actors and workers
are used to identify actors and use cases for the
layered system. The use cases are studied to identify
the architecturally most relevant analysis types, which
are grouped into subsystems that are molded to suit
the target implementation environment. During
design, the layered system is adapted to Commercial
Off the Shelf products and legacy systems, and
defined using explicit interfaces and facades. Finally
the architecture is implemented and tested using the
key use cases as drivers.

AFE proceeds in iterations, where at first only a small
fraction of the use cases are selected, analyzed,
designed, implemented, and tested according to the
above steps. These use cases are selected so that
they are the most relevant to defining the
architecture. Then the second most relevant use
cases are selected, and so on. Based on the resulting
architecture, the application and component
systems are then developed in separate processes
(CSE and ASE).” (Jacobson, Griss, Jonsson)

13: CS630 OO Systems Engineering Les Waguespack, 200214

AFE Steps:
• AFE1: capturing requirements that have

impact on architecture

» essential to understand how the family
applications will work together and support the
whole user domain

» business, market, and customer needs and
trends

» high level use cases represent architecturally
relevant requirements

- static vs. dynamic domain features
- feature interoperability/compatibility

• AFE2: Robustness Analysis
» “B-C-E” boundary-control-entity patterns
» boundary types for actors / use cases
» control types / business rules
» high level application domain patterns of

object composition and interaction

13: CS630 OO Systems Engineering Les Waguespack, 200215

AFE Steps (cont):
• AFE3: Designing the layered system

» subsystems organized into layers with facades
between them

- each subsystem may ultimately become an
individual application or component system

- coupling / cohesion, middleware glue
• AFE4: Implementing a layer system

architecture
» prototype code that implements

“architecturally relevant use cases”
» test them
» test concurrency and distribution support

• AFE5: Test the layered system
» based on requirements from AFE1 build test

suites to exercise the system interfaces

13: CS630 OO Systems Engineering Les Waguespack, 200216

Component System Engineering (CSE)

“The process of component system engineering
develops use case, analysis, design, implementation
and test models similar to the ordinary OOSE software
engineering process focusing on building robust,
extendible, and flexible components. The
component engineering uses input from business
models, models of the superordinate (domain) system,
and input from users, customers, and domain experts.

Business actors and workers are used to identify
actors and use cases, which in turn give rise to
analysis types grouped into subsystems that are
adapted to the implementation environment. The
superordinate use case and design models are used
to define interfaces of the component system, and
suggest actor and use case components.

Components are grouped into a number of
facades to make them as reusable as possible --
including all documentation, examples, tools, and
configuration aids available.” (Jacobson, Griss,
Jonsson)

13: CS630 OO Systems Engineering Les Waguespack, 200217

CSE Steps:
• CSE1: capturing requirements focusing on

variability

» multiple application support
» long term reusable asset
» variability engineering means understanding

the domain “articulation points”
• CSE2: Robustness Analysis to maximize

flexibility
» finding robust and reusable object structure
» how are things the same and how different
» define “variation points” providing “hooks” into

analysis types
» package the analysis types minimizing the

dependencies (coupling)
» verify that if the analysis types allow for

interaction of components that the
components do too

13: CS630 OO Systems Engineering Les Waguespack, 200218

CSE Steps (cont):
• CSE3: Designing the component system

» identify design class candidates for each
analysis class

» use the AFE documentation to conform to
interaction guidelines

» verify that component interfaces support the
AFE documentation

» build classes, define methods, allocate threads
» implement and unit test

• CSE4: Implementing a component system
» finally everyone can get “code on their breath”
» develop and use design-to-code guidelines for

the specific programming language / system
• CSE5: Test the layered system

» test reuse, abstraction and any configurations
• CSE6: Package Everything for Reuse

» documents, tutorials, guidelines, test-beds,
training manuals, component encyclopedia

13: CS630 OO Systems Engineering Les Waguespack, 200219

Application System Engineering (ASE)

“The process of application system engineering
develops use case, analysis, design, implementation
and test models similar to the ordinary OOSE software
engineering process focusing on a specific
application requirement. This process is
accomplished by reusing components from CSE to
improve quality and time to market.

The business models and models of the
superordinate system define the interfaces that the
application system must supply and define the
component systems that the application system can
reuse. The architecture of the reused component
systems guides the application engineers as they
architect and design the application system.

ASE is a sequence of iterations of controlled
implementation of use cases specifically adding
value to the customer and end users. It is also
targeted at reducing one or more risks associated with
developing the application system. ” (Jacobson, Griss,
Jonsson)

13: CS630 OO Systems Engineering Les Waguespack, 200220

ASE Steps:
• ASE1: capturing requirements

» identifying customer & end user needs
» aligning same to AFE and CSE requirements
» reusing and extending AFE use cases

• ASE2: robustness analysis for flexible
application systems

» reusing AFE and CSE use cases reusing their
respective analysis types as well

» reuse, reuse, reuse
» justify extensions
» document and communicate the requirement

to the AFE and CSE teams

13: CS630 OO Systems Engineering Les Waguespack, 200221

ASE Steps (cont):
• ASE3: Designing the application system

» reuse design classes and design models from
AFE and CSE

» exploit “wrappers,” “decorators,” and
“mediators” (Gamma, pattern languages)

• ASE4: Implementing an application system
» scripting tools, VBScript, JAVAScript, etc.

• ASE5: Test the application system
» use the AFE and CSE test models
» use the application requirement test model

• ASE6: Package Everything for Support
» description of purpose, function, configuration
» guides for installation, tuning, configuration
» environmental requirements, platform,

resources
» end user support, application history
» FAQ’s, defects, limitations
» everything that any well OOSE’d system would

have!!

13: CS630 OO Systems Engineering Les Waguespack, 200222

Customer

End User

Manufacturer

Application System Engineering

Component System
Engineering

application
use case
engineer

application
use case model

application
design model

application
subsystem
engineer

application
tester

application
test model

application
system

lead
architect

layered
design model

facade

component
use case model

component
design model

component use
case engineer

component
subsystem
engineer

component
system

Application Family
Engineering

Reuse Business Processes

