12:

1

SOFTWARE REUSE

Architecture, Process and
Organization for Business Success

Jacobson, Griss, Jonsson
Addison-Wesley, 1997

Lecture Slides
to Accompany the Text

B | CS630 OO Systems Engineering Les Waguespack, 2001

12:

2

Software Reuse (part 1)

* Beating the competition

» Faster:
- software must meet market window set by
competitive organizations
» Better:
- sofftware must serve requirements of the
process it supports and with few failures
» Cheaper:
- software must be less expensive to produce
and maintain

Slides adapted from Software Reuse, Ivar Jacobson, Griss, Jonsson,
Addison-Wesley, 1997
B | CS630 OO Systems Engineering Les Waguespack, 2001

software Reuse What and Why?

» develop systems of components of

reasonable size and reuse them

» Minimize redundant work
- environment / problem description
- unit and system testing
» “Passive Reuse” may result in 15-20% reuse
» “Systematic Reuse”
- Hitachi’s Eagle : 60-98% reuse
- Hewletft-Packard : 25-50% reuse of firmware
- AT&T : 40-92% in Telecoms support software
- Brooklyn Union Gas : 90-95% in process layer
and 67% in user interface and b-objects
- Ericsson AXE : 90 %
- Motorola 85% reuse and 10:1 in compiler
tools

12: 3 B | CS630 OO Systems Engineering Les Waguespack, 2001

software Reuse What happens?

* Time fo market
» reduced 80 - 80%
» Defects
» reduced 80 - 90%
 Maintenance cost
» reduced 80 - 920%
« Software life cycle costs
» reduced 15-75%
* Product Quality

» highly customizable products

» increased market agility

» consistent families of related products
» familiar compatible interfaces

12: 4 | CS630 OO Systems Engineering Les Waguespack, 2001

Software Reuse Challenges?

« Software engineering approaches to
requirements, architecture, analysis,
design, fest, and implementation of
clearly identified elements for reuse

* No effective component inventory: lack
of packaging, documentation,
cataloging, inadequate libraries

« Component inflexibility: host,
architecture, language incompatibilities

* Lack of reuse-oriented support 1ools
and environments

* Need for business models that support
capital infensive, domain engineering

12: 5 N | CS630 OO Systems Engineering Les Waguespack, 2001

12:

Systematic Software Reuse

Manage

plan, fund, prioritize, coordinate, learn

!

Create

framework,

engineer domain,

components, tools

A 4

Support

certify, classify,

package, distribute, |

advise, maintain

Product requirements
and existing software

Y

Reuse

| select, customize,

assemble

_>
Products

- s CS630 OO Systems Engineering Les Waguespack, 2001

12:

7

Systematic Software Reuse:

» Create: identify & produce

* Reuse: select, customize, assemble

» Support: certify, package, maintain

* Manage: plan, coordinate, measure

« Domain Engineering: identifying core
structures and patterns that are shared
by a family of application requirements
within an application domain; resulfing
in customizable, configurable “parts” of
adpplications in the domain

» Application System Engineering:
specialization and assemble of domain
"parts” to meet specific requirements

| CS630 OO Systems Engineering Les Waguespack, 2001

Systematic Software Reuse O rg O ﬂ |ZOT|O ﬂ

» Classic software development
organization focuses on creafing
application solutions

« Systematic Software Reuse organization
must balance application solution
creation with reusable asset creation
and component stewardship

* Reuse must be "“championed”
organizationally with reuse as a
"strateqic” concern of uppermost
management

12: 8 | CS630 OO Systems Engineering Les Waguespack, 2001

Adopting Reuse Incrementally

improved time to market, costs, quality

development

A inter operability,
high reuse levels
broader
coverage
reduced
maintenance domain-
reduced costs . specific
» | development orci}]gﬁg;urol reuse-driven
= time managed organization
S workproduct
o0 black-box reuse
- code
informal reuse
code
r
None euse
-

Investment, experience, fime

12: 9 | CS630 OO Systems Engineering Les Waguespack, 2001

rapid custom product

Keeping the Faith!

» sustained top management leadership

» foster a system architecture, organization

» engender reuse as core to architecture

» manage create and use separately

» create components in the “real” world

» Manage systems/components as assets

» fechnology and tools are not sufficient

» sSUpport champions and change agents

» invest in infrastructure and reuse education

» measure with metrics and optimize o them

12: 10 | CS630 OO Systems Engineering Les Waguespack, 2001

12: 11

Architectural Style

(system layering)

Application Systems

Business-specific components

Middleware components

The Architectural style of a system is the denotation of the
modeling languages used when modeling that system.
(Jacobson et al., 1992).

s CS630 OO Systems Engineering Les Waguespack, 2001

Object-Oriented Software
Engineering

requirements

capture
systems
end < :/rchi’rec’r
customer ' designer
-—
the System

/

installer / \ implementor

project tester
manager

12: 12 B | CS630 OO Systems Engineering Les Waguespack, 2001

Main Activities of an SDLC

Requirementg] Robustness . . .
capture Analysis Design Implementation Testing

B 3 X ¥ X

N N N N N

D D D D D
Use case Analysis Design mplementatig Testing
model model model n model

model

12: 13 | CS630 OO Systems Engineering Les Waguespack, 2001

Software Engineering is
systematic model building

System development

System

-
Abstract Concrete
£
£
Use case Analysis Design Implementation Testing

'.% > model > model > model > model > model -
o

o}

[ad

Requirements

12: 14

Construction Testing
capture

| CS630 OO Systems Engineering Les Waguespack, 2001

A Hylbrid or Meta-
Model Approach
 Spiral Life Cycle

e expands the scope of cycle focus to
process decisions as well as product
decisions

» focuses on risk analysis to guide process

e revisits objectives, alternatives, constraints
frequently

* shapes subsequent cycle phases as part of
the life cycle process

* [T redefines the life cycle question

* by subsuming the life cycle as a product in
itself

« allows other life cycle models to be special
12: 15 C.aSeSs B CS630 OO Systems Engineering Les Waguespack, 2001

Spiral Model

Determine
Objectives,
Alternatives,
Constraints

Evaluate
alternatives,
identify, resolve
risks

Develop
| /
Plr?QSg?XT 1 verify next-
P ' level product
|
|
|
12: 16 _ CS630 OO Systems Engineering Les Waguespack, 2001

Spiral Model

Cumulative cost

Evaluate
Determine : alternatives,
Objectives, I—» identify,
Alternatives, progress through resolve risks
Constraint I steps .
analysis -

I 7
risk
analysis -

e

risk
analysis -~
-

I risk
I<:1nc1|ysis - operational
mmitment “ prototype \ prototype | prototype| prototype

partifio requiremen’rs&life: — — _ simuldtions, mo

cycle planl concept of —
| operation

e

review

software - -

requirement
development | requirement

plan | Vvalidation

software
product design

integration and test I design
plan | validation,

verification : ,
I integration|

plan the | IAccep’ronceI and
next phase fest Develop,
Plan next phases mplententation verify next-

| level product

12: 17 B | CS630 OO Systems Engineering Les Waguespack, 2001

Incremental, Iterative OOSE
Model Building

Iteration 1

Requirement] Robustness

capture Analysis Design

Implementation Testing

[teration 2

Requirement] Robustness

capture Analysis Design |implementationf Testing

lteration 3

12: 18 B | CS630 OO Systems Engineering Les Waguespack, 2001

12: 19

Objects unify the modeling
process.

* Objects contain both behavior and data

* UML allows extensions called “Stereotypes” that
can be used to define any modeling artifact,
style or relationship needed (i.e. «boundary»,
«interface», «uses», «extends», ...)

* Packages and subsystems collect classes, types
and ofher elements for organization

B | CS630 OO Systems Engineering Les Waguespack, 2001

USE Cases capture system
reqUIremenTS Requirements

capture

* USE Cases define the “actors” and the
"actions” that characterize the system
responsibilities exhibited in an encounter with

the system
» An actor is anything that interacts
(exchanges data and events) with the
system.
» A Use case is a sequence of transactions
O performed by a system which yields and
observable result of value for an actor.
—we» . » «USeS» defines the generalization of use
case behavior inherited by a child case

—extends» , 5 «extends» describes a derived (or
alternate) version of a use case

12: 20 B | CS630 OO Systems Engineering Les Waguespack, 2001

The analysis model shapes
system architecture anaiyss

* Architecture deals with principles, mechanisms,
patterns, and structures that clearly
communicate the structure of the system.

* Analysis models deal with the “ideal”
implementation independent system functions

» «entity» objects depict long lived objects
» «boundary» objects depict links between

I_O the system and environment,
communicafing

f » «control» objects depict use-case-specific

behavior

» «analysis model» is a stereotypical

XSA@»Q package collecting the analysis content

«analysis model»|

4o

12: 21 B | CS630 OO Systems Engineering Les Waguespack, 2001

The design model defines
the implementation esigr

* The design modelis a “blueprint” for the system

programming, how it is organized

* Design classes are more detailed than analysis
classes, but are not “source code” level yet

¢ All analysis classes are mapped to one or more
design classes (or fewer) based on the class and
component libraries of the target platform

* This mapping is the “frace” that connects the
models and results in “tfraceability”

12: 22 B | CS630 OO Systems Engineering Les Waguespack, 2001

The implementation model
iS The COde Implementation

* Traced directly from the design model, the
source code implements the relationships and
behaviors defined in the design model

* In, particular method bodies are specific 1o the
target programming platform, C++, Java,
Smalltalk

* Specific interfaces to elements of a component
library are defined in specific syntax (e.g.
OMG's Interface Definition Language, IDL)

12: 23 | CS630 OO Systems Engineering Les Waguespack, 2001

The test model validates
the system Testing

* The is the specification of all tests and their
expected results

* A test is derived from a use case instance and
attempts to exercise all core and extended use
case behavior

* Test case development can proceed in parallel
with analysis, design and implementation since
tests are derived from the requirements
documentation

12: 24 | CS630 OO Systems Engineering Les Waguespack, 2001

OQOSE System is a set of models

«test model»

«use case model» «analysis model»

Ol | FO
; O
O

O

(- ‘
«<implementation model» «design model»

—~ =

B | CS630 OO Systems Engineering Les Waguespack, 2001

12: 25

OOSE component reuse

* application system. is a system product
delivered outside of the Reuse Business; when
installed, it offers a coherent set of use cases to
an end user

* application system family: is a set of
application systems with common features

* component: is a type, class or any other
workproduct that has been specifically
engineered to be reusable

* component system: a system product that
offers a set of reusable feafures, interrelated

* facade: a packaged subset of components
providing access o a select set of component
system features

* variation point: identifies a point of “inflection”
in a reusable component

12: 26 | CS630 OO Systems Engineering Les Waguespack, 2001

Variability mechanisms

* Inheritance: absfract methods, method
overriding; sub-typing

* Uses: reusing an abstract use case concretely
«uses»

* Extensions and extension points: attached
variations in the normal flow of behavior,
«extends»

* Parameterizaton: attribute variation (bounds...)

* Configuration and module-interconnection
languages: selective inclusion of method
bodies or implementations

* Generation: "macro” or "“compiler-like”
generation of source code based on
selection/specification; sometimes “table-
driven”

12: 27 | CS630 OO Systems Engineering Les Waguespack, 2001

— —l

Layered Architecture

(virtual machine abstraction support)

Application Systems

Business-specific components

Middleware components

System software components

12: 28

\

Variants of a particular application
system

Distinct application system - each
application system offers a coherent
set of use cases to some end users

Application domain and organization
specific - contains a number of
component systems specific to the
type of business

Platform-independent distributed
object computing - offers component
systems for utility classes and platform-
independent services for things like
distributed object compufing in
heterogeneous environments

Platform-specific - contains the
software for the actual infrastructure
such as operating systems, interfaces
to specific hardware, and so on.

| CS630 OO Systems Engineering Les Waguespack, 2001

