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SOFTWARE REUSE
Architecture, Process and

Organization for Business Success

Jacobson, Griss, Jonsson
Addison-Wesley, 1997

Lecture Slides
to Accompany the Text
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Software Reuse  (part 1)

• Beating the competition
» Faster:

- software must meet market window set by 

competitive organizations

» Better:

- software must serve requirements of the 

process it supports and with few failures

» Cheaper:

- software must be less expensive to produce 

and maintain

Slides adapted from Software Reuse, Ivar Jacobson, Griss, Jonsson,
Addison-Wesley, 1997
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Software Reuse What and Why?
• develop systems of components of 

reasonable size and reuse them
» minimize redundant work

- environment / problem description

- unit and system testing

» “Passive Reuse” may result in 15-20% reuse

» “Systematic Reuse”

- Hitachi’s Eagle : 60-98% reuse

- Hewlett-Packard : 25-50% reuse of firmware

- AT&T : 40-92% in Telecoms support software

- Brooklyn Union Gas : 90-95% in process  layer 

and 67% in user interface and b-objects

- Ericsson AXE : 90 %

- Motorola 85% reuse and 10:1  in compiler 

tools
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Software Reuse What happens?
• Time to market

» reduced 50 - 80%

• Defects
» reduced 80 - 90%

• Maintenance cost
» reduced 80 - 90%

• Software life cycle costs
» reduced 15-75%

• Product Quality
» highly customizable products

» increased market agility

» consistent families of related products

» familiar compatible interfaces
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Software Reuse Challenges?
• Software engineering approaches to 

requirements, architecture, analysis, 

design, test, and implementation of 

clearly identified elements for reuse

• No effective component inventory: lack 

of packaging, documentation, 

cataloging, inadequate libraries

• Component inflexibility: host, 

architecture, language incompatibilities

• Lack of reuse-oriented support tools 

and environments

• Need for business models that support 

capital intensive, domain engineering
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Systematic Software Reuse



12: CS630  OO Systems Engineering   Les Waguespack, 20017

Systematic Software Reuse:
• Create: identify & produce

• Reuse: select, customize, assemble

• Support: certify, package, maintain

• Manage: plan, coordinate, measure

• Domain Engineering: identifying core 

structures and patterns that are shared 

by a family of application requirements 

within an application domain; resulting 

in customizable, configurable “parts” of 

applications in the domain

• Application System Engineering: 

specialization and assemble of domain 

“parts” to meet specific requirements
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Systematic Software Reuse Organization:
• Classic software development 

organization focuses on creating 

application solutions

• Systematic Software Reuse organization 

must balance application solution 

creation with reusable asset creation 

and component stewardship

• Reuse must be “championed” 

organizationally with reuse as a 

“strategic” concern of uppermost 

management
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Adopting Reuse Incrementally
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Keeping the Faith!
» sustained top management leadership

» foster a system architecture, organization

» engender reuse as core to architecture

» manage create and use separately

» create components in the “real” world

» manage systems/components as assets

» technology and tools are not sufficient

» support champions and change agents

» invest in infrastructure and reuse education

» measure with metrics and optimize to them
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Architectural Style
(system layering)

The Architectural style of a system is the denotation of the 
modeling languages used when modeling that system. 
(Jacobson et al., 1992).

Application Systems

Business-specific components

Middleware components

System software components
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Object-Oriented Software
Engineering
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Requirements
capture

Robustness
Analysis Design Implementation Testing
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Software Engineering is
systematic model building
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A Hybrid or Meta-
Model Approach

• Spiral Life Cycle
• expands the scope of cycle focus to 

process decisions as well as product 
decisions

• focuses on risk analysis to guide process
• revisits objectives, alternatives, constraints 

frequently
• shapes subsequent cycle phases as part of 

the life cycle process

• It redefines the life cycle question
• by subsuming the life cycle as a product in 

itself
• allows other life cycle models to be special 

cases
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Spiral Model
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Spiral Model
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Requirements
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Incremental, Iterative OOSE
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Objects unify the modeling 

process.
• Objects contain both behavior and data

• UML allows extensions called “Stereotypes” that 

can be used to define any modeling artifact, 

style or relationship needed (i.e. «boundary», 

«interface», «uses», «extends», …)

• Packages and subsystems collect classes, types 

and other elements for organization
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USE Cases capture system 

requirements
• USE Cases define the “actors” and the 

“actions” that characterize the system 

responsibilities exhibited in an encounter with 

the system

» An actor is anything that interacts 

(exchanges data and events) with the 

system.

» A use case is a sequence of transactions 

performed by a system which yields and 

observable result of value for an actor.

» «uses» defines the generalization of use 

case behavior inherited by a child case 

» «extends» describes a derived (or 

alternate) version  of a use case 

Requirements
capture

«uses»

«extends»
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The analysis model shapes 

system architecture
• Architecture deals with principles, mechanisms, 

patterns, and structures that clearly 

communicate the structure of the system.

• Analysis models deal with the “ideal” 

implementation independent system functions

» «entity» objects depict long lived objects

» «boundary» objects depict links between 

the system and environment, 

communicating

» «control» objects depict use-case-specific 

behavior

» «analysis model» is a stereotypical 

package collecting the analysis content

Robustness
Analysis

«analysis model»
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The design model defines 

the implementation
• The design model is a “blueprint” for the system 

programming, how it is organized

• Design classes are more detailed than analysis 

classes, but are not “source code” level yet

• All analysis classes are mapped to one or more 

design classes (or fewer) based on the class and 

component libraries of the target platform

• This mapping is the “trace” that connects the 

models and results in “traceability”

Design
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The implementation model 

is the code
• Traced directly from the design model, the 

source code implements the relationships and 

behaviors defined in the design model

• In, particular method bodies are specific to the 

target programming platform, C++, Java, 

Smalltalk

• Specific interfaces to elements of a component 

library are defined in specific syntax (e.g. 

OMG’s Interface Definition Language, IDL)

Implementation
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The test model validates 

the system
• The is the specification of all tests and their 

expected results

• A test is derived from a use case instance and 

attempts to exercise all core and extended use 

case behavior

• Test case development can proceed in parallel 

with analysis, design and implementation since 

tests are derived from the requirements 

documentation

Testing
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«test model»

«analysis model»«use case model»

«design model»«implementation model»

OOSE System is a set of models
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OOSE component reuse
• application system:  is a system product 

delivered outside of the Reuse Business; when 

installed, it offers a coherent set of use cases to 

an end user

• application system family:  is a set of 

application systems with common features

• component:  is a type, class or any other 

workproduct that has been specifically 

engineered to be reusable

• component system:  a system product that 

offers a set of reusable features, interrelated

• facade:  a packaged subset of components 

providing access to a select set of component 

system features

• variation point:  identifies a point of “inflection” 

in a reusable component
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Variability mechanisms
• Inheritance: abstract methods, method 

overriding; sub-typing

• Uses: reusing an abstract use case concretely 

«uses»

• Extensions and extension points: attached 

variations in the normal flow of behavior, 

«extends»

• Parameterizaton: attribute variation (bounds...)

• Configuration and module-interconnection 
languages: selective inclusion of method 

bodies or implementations

• Generation: “macro” or “compiler-like” 

generation of source code based on 

selection/specification; sometimes “table-

driven”
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Application Systems

Business-specific components

Middleware components

System software components

Variants of a particular application 
system

Distinct application system - each 
application system offers a coherent 
set of use cases to some end users

Application domain and organization 
specific - contains a number of 
component systems specific to the 
type of business

Platform-independent distributed 
object computing - offers component 
systems for utility classes and platform-
independent services for things like 
distributed object computing in 
heterogeneous environments

Platform-specific - contains the 
software for the actual infrastructure 
such as operating systems, interfaces 
to specific hardware, and so on.

Layered Architecture
(virtual machine abstraction support)


