
12: CS630 OO Systems Engineering Les Waguespack, 20011

SOFTWARE REUSE
Architecture, Process and

Organization for Business Success

Jacobson, Griss, Jonsson
Addison-Wesley, 1997

Lecture Slides
to Accompany the Text

12: CS630 OO Systems Engineering Les Waguespack, 20012

Software Reuse (part 1)

• Beating the competition
» Faster:

- software must meet market window set by

competitive organizations

» Better:

- software must serve requirements of the

process it supports and with few failures

» Cheaper:

- software must be less expensive to produce

and maintain

Slides adapted from Software Reuse, Ivar Jacobson, Griss, Jonsson,
Addison-Wesley, 1997

12: CS630 OO Systems Engineering Les Waguespack, 20013

Software Reuse What and Why?
• develop systems of components of

reasonable size and reuse them
» minimize redundant work

- environment / problem description

- unit and system testing

» “Passive Reuse” may result in 15-20% reuse

» “Systematic Reuse”

- Hitachi’s Eagle : 60-98% reuse

- Hewlett-Packard : 25-50% reuse of firmware

- AT&T : 40-92% in Telecoms support software

- Brooklyn Union Gas : 90-95% in process layer

and 67% in user interface and b-objects

- Ericsson AXE : 90 %

- Motorola 85% reuse and 10:1 in compiler

tools

12: CS630 OO Systems Engineering Les Waguespack, 20014

Software Reuse What happens?
• Time to market

» reduced 50 - 80%

• Defects
» reduced 80 - 90%

• Maintenance cost
» reduced 80 - 90%

• Software life cycle costs
» reduced 15-75%

• Product Quality
» highly customizable products

» increased market agility

» consistent families of related products

» familiar compatible interfaces

12: CS630 OO Systems Engineering Les Waguespack, 20015

Software Reuse Challenges?
• Software engineering approaches to

requirements, architecture, analysis,

design, test, and implementation of

clearly identified elements for reuse

• No effective component inventory: lack

of packaging, documentation,

cataloging, inadequate libraries

• Component inflexibility: host,

architecture, language incompatibilities

• Lack of reuse-oriented support tools

and environments

• Need for business models that support

capital intensive, domain engineering

12: CS630 OO Systems Engineering Les Waguespack, 20016

Manage
plan, fund, prioritize, coordinate, learn

Create
engineer domain,

framework,
components, tools

Support
certify, classify,

package, distribute,
advise, maintain

Reuse
select, customize,

assemble
Product requirements
and existing software

Products

Systematic Software Reuse

12: CS630 OO Systems Engineering Les Waguespack, 20017

Systematic Software Reuse:
• Create: identify & produce

• Reuse: select, customize, assemble

• Support: certify, package, maintain

• Manage: plan, coordinate, measure

• Domain Engineering: identifying core

structures and patterns that are shared

by a family of application requirements

within an application domain; resulting

in customizable, configurable “parts” of

applications in the domain

• Application System Engineering:

specialization and assemble of domain

“parts” to meet specific requirements

12: CS630 OO Systems Engineering Les Waguespack, 20018

Systematic Software Reuse Organization:
• Classic software development

organization focuses on creating

application solutions

• Systematic Software Reuse organization

must balance application solution

creation with reusable asset creation

and component stewardship

• Reuse must be “championed”

organizationally with reuse as a

“strategic” concern of uppermost

management

12: CS630 OO Systems Engineering Les Waguespack, 20019

Adopting Reuse Incrementally

None

informal
code
reuse

black-box
code
reuse

managed
workproduct

reuse

architectural
reuse

domain-
specific

reuse-driven
organization

reduced
development

time

reduced
maintenance

costs

broader
coverage

inter operability,
high reuse levels

rapid custom product
development

improved time to market, costs, quality

Investment, experience, time

Be
n

e
fit

s

12: CS630 OO Systems Engineering Les Waguespack, 200110

Keeping the Faith!
» sustained top management leadership

» foster a system architecture, organization

» engender reuse as core to architecture

» manage create and use separately

» create components in the “real” world

» manage systems/components as assets

» technology and tools are not sufficient

» support champions and change agents

» invest in infrastructure and reuse education

» measure with metrics and optimize to them

12: CS630 OO Systems Engineering Les Waguespack, 200111

Architectural Style
(system layering)

The Architectural style of a system is the denotation of the
modeling languages used when modeling that system.
(Jacobson et al., 1992).

Application Systems

Business-specific components

Middleware components

System software components

12: CS630 OO Systems Engineering Les Waguespack, 200112

Object-Oriented Software
Engineering

requirements
capture

systems
architect

designer

implementor

testerproject
manager

installer

customer

end user

the System

12: CS630 OO Systems Engineering Les Waguespack, 200113

Requirements
capture

Robustness
Analysis Design Implementation Testing

Main Activities of an SDLC

Use case
model

Analysis
model

Design
model

Implementatio
n

model

Testing
model

12: CS630 OO Systems Engineering Les Waguespack, 200114

Software Engineering is
systematic model building

Use case
model

Analysis
model

Design
model

Implementation
model

Testing
model

Abstract Concrete

Requirements
capture TestingConstruction

R
e

q
u

ire
m

e
n

ts

Sy
st

e
m

System development

12: CS630 OO Systems Engineering Les Waguespack, 200115

A Hybrid or Meta-
Model Approach

• Spiral Life Cycle
• expands the scope of cycle focus to

process decisions as well as product
decisions

• focuses on risk analysis to guide process
• revisits objectives, alternatives, constraints

frequently
• shapes subsequent cycle phases as part of

the life cycle process

• It redefines the life cycle question
• by subsuming the life cycle as a product in

itself
• allows other life cycle models to be special

cases

12: CS630 OO Systems Engineering Les Waguespack, 200116

Spiral Model

Determine
Objectives,
Alternatives,
Constraints

Evaluate
alternatives,
identify, resolve
risks

Develop,
verify next-
level product

Plan next
phases

12: CS630 OO Systems Engineering Les Waguespack, 200117

Spiral Model

Determine
Objectives,
Alternatives,
Constraints

Evaluate
alternatives,
identify,
resolve risks

Develop,
verify next-
level product

Plan next phases

risk
analysis

prototype prototype prototype
operational
prototype

risk
analysis

risk
analysis

risk
analysis

simulations, models, benchmarks
concept of
operation software

requirement
requirement

validation software
product design

design
validation,
verification

requirements & life
cycle plan

development
plan

integration and test
plan

plan the
next phase

detailed
design

code
unit
test

integration
and
testAcceptance

test
implementation

Cumulative cost

progress through
steps

re
vi

e
w

commitment
partition

12: CS630 OO Systems Engineering Les Waguespack, 200118

Requirements
capture

Robustness
Analysis Design Implementation Testing

Incremental, Iterative OOSE
Model Building

Requirements
capture

Robustness
Analysis Design Implementation Testing

Requirements
capture

Robustness
Analysis Design Implementation Testing

Iteration 1

Iteration 2

Iteration 3

12: CS630 OO Systems Engineering Les Waguespack, 200119

Objects unify the modeling

process.
• Objects contain both behavior and data

• UML allows extensions called “Stereotypes” that

can be used to define any modeling artifact,

style or relationship needed (i.e. «boundary»,

«interface», «uses», «extends», …)

• Packages and subsystems collect classes, types

and other elements for organization

12: CS630 OO Systems Engineering Les Waguespack, 200120

USE Cases capture system

requirements
• USE Cases define the “actors” and the

“actions” that characterize the system

responsibilities exhibited in an encounter with

the system

» An actor is anything that interacts

(exchanges data and events) with the

system.

» A use case is a sequence of transactions

performed by a system which yields and

observable result of value for an actor.

» «uses» defines the generalization of use

case behavior inherited by a child case

» «extends» describes a derived (or

alternate) version of a use case

Requirements
capture

«uses»

«extends»

12: CS630 OO Systems Engineering Les Waguespack, 200121

The analysis model shapes

system architecture
• Architecture deals with principles, mechanisms,

patterns, and structures that clearly

communicate the structure of the system.

• Analysis models deal with the “ideal”

implementation independent system functions

» «entity» objects depict long lived objects

» «boundary» objects depict links between

the system and environment,

communicating

» «control» objects depict use-case-specific

behavior

» «analysis model» is a stereotypical

package collecting the analysis content

Robustness
Analysis

«analysis model»

12: CS630 OO Systems Engineering Les Waguespack, 200122

The design model defines

the implementation
• The design model is a “blueprint” for the system

programming, how it is organized

• Design classes are more detailed than analysis

classes, but are not “source code” level yet

• All analysis classes are mapped to one or more

design classes (or fewer) based on the class and

component libraries of the target platform

• This mapping is the “trace” that connects the

models and results in “traceability”

Design

12: CS630 OO Systems Engineering Les Waguespack, 200123

The implementation model

is the code
• Traced directly from the design model, the

source code implements the relationships and

behaviors defined in the design model

• In, particular method bodies are specific to the

target programming platform, C++, Java,

Smalltalk

• Specific interfaces to elements of a component

library are defined in specific syntax (e.g.

OMG’s Interface Definition Language, IDL)

Implementation

12: CS630 OO Systems Engineering Les Waguespack, 200124

The test model validates

the system
• The is the specification of all tests and their

expected results

• A test is derived from a use case instance and

attempts to exercise all core and extended use

case behavior

• Test case development can proceed in parallel

with analysis, design and implementation since

tests are derived from the requirements

documentation

Testing

12: CS630 OO Systems Engineering Les Waguespack, 200125

«test model»

«analysis model»«use case model»

«design model»«implementation model»

OOSE System is a set of models

12: CS630 OO Systems Engineering Les Waguespack, 200126

OOSE component reuse
• application system: is a system product

delivered outside of the Reuse Business; when

installed, it offers a coherent set of use cases to

an end user

• application system family: is a set of

application systems with common features

• component: is a type, class or any other

workproduct that has been specifically

engineered to be reusable

• component system: a system product that

offers a set of reusable features, interrelated

• facade: a packaged subset of components

providing access to a select set of component

system features

• variation point: identifies a point of “inflection”

in a reusable component

12: CS630 OO Systems Engineering Les Waguespack, 200127

Variability mechanisms
• Inheritance: abstract methods, method

overriding; sub-typing

• Uses: reusing an abstract use case concretely

«uses»

• Extensions and extension points: attached

variations in the normal flow of behavior,

«extends»

• Parameterizaton: attribute variation (bounds...)

• Configuration and module-interconnection
languages: selective inclusion of method

bodies or implementations

• Generation: “macro” or “compiler-like”

generation of source code based on

selection/specification; sometimes “table-

driven”

12: CS630 OO Systems Engineering Les Waguespack, 200128

Application Systems

Business-specific components

Middleware components

System software components

Variants of a particular application
system

Distinct application system - each
application system offers a coherent
set of use cases to some end users

Application domain and organization
specific - contains a number of
component systems specific to the
type of business

Platform-independent distributed
object computing - offers component
systems for utility classes and platform-
independent services for things like
distributed object computing in
heterogeneous environments

Platform-specific - contains the
software for the actual infrastructure
such as operating systems, interfaces
to specific hardware, and so on.

Layered Architecture
(virtual machine abstraction support)

