
A Reuse Reference Grid for Strategic Reuse Goals Assessment

Leslie J. Waguespack
William T. Schiano

Bentley College
lwaguespack@bentley.edu

wschiano@bentley.edu

Abstract

Reuse throughout system life cycles is the most

promising organizational policy for cost containment and
benefit exploitation available to information system
managers today. Large-scale reuse is an expensive
endeavor whose benefits are realized when it is applied
strategically rather than tactically. The distinction eludes
many (and challenges most) IS managers. We present a
reuse reference grid for managers to use as an assessment
framework to help categorize and assess the cost/benefit of
their current level of reuse as a prelude to considering
future reuse opportunities.

1. Introduction

Software engineers strive for reduced development and

maintenance costs and shortened time to market [8]. The
only technological thrust consistently advancing toward
these objectives is software reuse [1]. Object oriented
technology (OO) and its alter ego, components, have made
a dramatic impact on the software development industry,
emerging as a key reuse enabler. OO is associated with
dramatic successes like that of Brooklyn Union Gas [4]
that whet the appetites of managers looking for a
competitive edge. Most technology giants have a major
reuse effort in place [9]. OO is the backbone technology of
e-commerce. Gartner predicted that in 2005, 80 percent of
all new application development project spending would
employ object-oriented analysis and design [5]. Well-
reputed organizations have invested generously in projects
using OO and failed in their reuse efforts [6]. Such failed
initiatives are regularly criticized for “not having stayed
the course long enough” or for “not having adopted the
whole paradigm” [7, 11].

This paper explores the concept that it is possible to
adopt reuse and supporting OO technologies incrementally
and expect incremental benefits. The costs are not
mysterious, but the way benefits emerge is somewhat

more complex than with previous technologies. We
discuss reuse as an economic and organizational goal and
propose two dimensions along which organizations
choose to position themselves that define their
opportunities for reuse and the accompanying costs: the
scope of the requirement and sophistication of the
abstraction used to address the problem. The requirement
scope may vary, from individual application to system
and enterprise. The sophistication of the abstraction used
to address a problem may range from procedure-driven to
data-driven or behavior-driven.

We introduce a reuse reference grid, which combines
the dimensions of requirement scope and abstraction
sophistication to explore software reuse and the role of
OO tools and practice. Managers use the grid to assess
the current position of their organization or project. The
grid explains the incremental costs and benefits of
software reuse when combined with OO or component
technology, enabling managers to set goals and targets
for reuse programs.

2. A reference model for organizational
reuse

The efficacy of reusable components depends on two

characteristics: the artifact’s requirement scope and the
degree to which the abstraction may be specialized or
applied elsewhere. On the reuse reference grid (Figure 1)
requirement scope is depicted as the horizontal axis and
abstraction sophistication as the vertical axis.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

10-7695-2507-5/06/$20.00 (C) 2006 IEEE

Flowchart
Algorithm
Control

Structure

Data Flow Diagram
Subroutine/Macro

Library
Copy File

Structure Chart
Functional

Decomposition

File Type
Data Structure

Data Type

Entity
Relationship

Model
Data Dictionary

Enterprise
Data Model
Information
Engineering

Class
Abstract Data

Types
Object

Object Model
Class Library

Tool Kit

Domain Model
Business Object

Framework

PDA PDS PDE

DDA DDS DDE

BDA BDS BDE

Ab
st

ra
ct

io
n

So
ph

is
tic

at
io

n

Behavior
Driven

Data
Driven

Procedure
Driven

Application System Enterprise

Requirement Scope

Flowchart
Algorithm
Control

Structure

Data Flow Diagram
Subroutine/Macro

Library
Copy File

Structure Chart
Functional

Decomposition

File Type
Data Structure

Data Type

Entity
Relationship

Model
Data Dictionary

Enterprise
Data Model
Information
Engineering

Class
Abstract Data

Types
Object

Object Model
Class Library

Tool Kit

Domain Model
Business Object

Framework

PDA PDS PDE

DDA DDS DDE

BDA BDS BDE

Flowchart
Algorithm
Control

Structure

Data Flow Diagram
Subroutine/Macro

Library
Copy File

Structure Chart
Functional

Decomposition

File Type
Data Structure

Data Type

Entity
Relationship

Model
Data Dictionary

Enterprise
Data Model
Information
Engineering

Class
Abstract Data

Types
Object

Object Model
Class Library

Tool Kit

Domain Model
Business Object

Framework

PDA PDS PDE

DDA DDS DDE

BDA BDS BDE

Ab
st

ra
ct

io
n

So
ph

is
tic

at
io

n

Behavior
Driven

Data
Driven

Procedure
Driven

Application System Enterprise

Requirement Scope
Figure 1

Organizational Reuse Reference Grid

2.1. Requirement scope

Requirement scope bounds what the designer considers

in anticipating a component’s reuse potential. We define
three levels in this dimension:

application: the collection of information attributes and

behaviors supporting a business function,

system: the collection of applications and their

interrelationships that support a functional area within an
enterprise, and

enterprise: the collection of systems that encompass the

business information and practices that define the
operation of the enterprise or domain as a whole.

Figure 2 illustrates this dimension:

Application
Scope

System
Scope

Enterprise
Scope

Figure 2

Requirement Scope: Abstraction
Applicability

2.2. Abstraction sophistication

We divide abstractions into three groups:

Procedure-driven: “... the principle that any operation

that achieves a well-defined effect can be treated by its
users as a single entity, despite the fact that the operation
may actually be achieved by some sequence of lower-
level operations” [3]

Data-driven: “... the principle of defining a data type

in terms of the operations that apply to objects of the
type, with the constraint that the values of such objects
can be modified and observed only by the use of the
operations” [3], and

Behavior-driven: the principle of defining patterns of

behavior among actors in a situation within an
environment along with the stimuli that evoke those
behaviors and then discovering the state data and actions
that must be present to sustain those patterns of behavior
[12].

Procedure-driven modeling is dominated by
abstractions that aggregate sequences of modules.
Developers can construct applications by combining
modules. Functional decomposition is a systems
engineering approach grounded in procedural abstraction.

Data-driven modeling using typing, aggregation and
association abstracts information and relationships.
Developers can construct application systems by
combining any data or relationships within the database
design. Information engineering is a systems engineering
approach based upon data abstraction.

Behavior-driven modeling incorporates aspects of
procedure driven and data driven modeling. Through
polymorphism and inheritance, OO dialects of behavior
driven modeling surpass encapsulation and
modularization found in procedure driven modeling, and
surpass typing, aggregation and association in data-
driven modeling. Object oriented systems engineering
and component based systems engineering are based
upon behavior driven abstraction.

Procedure-driven modeling focuses on the steps
naturally evident in the current practice. It commonly
results in a singled-threaded or sequential depiction of
problem domain activities. Data-driven modeling would
more often focus on the questions that would need
answers and commonly results in a collection of un-
sequenced queries eventually to be organized in
application interface design. Behavior-driven modeling
attempts to identify underlying business rules that define
good behavior in the problem domain. At the same time

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

2

it attempts to affix those rules to the tightest focus of
responsibility possible. Indeed, both procedure-driven
modeling and data-driven modeling suffer from their
heritage of sequential-thinking born of the input-process-
output model of computing implementation. Behavior-
driven modeling assumes a more realistic asynchronous
interaction of business rules – an approach that does not
relegate the consideration of rarely observed business rule
combinations to the status of exceptions.

3. Reuse economics

Reuse depends on finding an appropriate artifact,

understanding its potential for reuse, and applying that
artifact in subsequent system building. Finding,
understanding and applying all depend on the initial design
of the artifact – whether reuse was an intended
characteristic during its creation. Reuse is not simply a
retrospective activity. It is also a prescriptive activity
incorporated in the artifact creation process.

Every newly constructed software system is made up of
two types of software: that newly crafted and that
previously existing in a form suitable for reuse. We refer
to the latter as components. System construction costs
result from building from scratch, producing and/or
procuring components, and reusing components. If the
hardware-reuse experience holds for software, systems
built from reusable components will cost less than crafting
new software from scratch. The economics of reuse
depend on three cost categories. They are:

One-off (OOC) - the cost of developing to satisfy a

requirement for a one-time use,
Build-for-reuse (BFRC) - the cost of developing a

reusable component to satisfy that same requirement, and
Reuse (RC) - the cost of employing a reusable

component(s) to satisfy that same requirement.

Build-for-reuse cost is typically greater than that of

One-off cost which is typically greater than that of Reuse,
(BFRC > OOC > RC). Build-for-reuse is greater than One-
off cost because “reuse” is an added requirement. A reuse
requirement affects the domain of analysis (applicability),
the design of interfaces (configurability), and the
documentation and test packages that accompany these.
Reuse is intended to be less than One-off cost specifically
because the packaging and preparation of the reusable
component obviates that effort in the reuse of it. Reuse
cost is the cost of locating, understanding and applying the
reusable component.

When deciding whether to build components in-house
management must identify requirements that are cost
effectively reusable. Management must answer “How

reusable can a component be?” and “How many times
can a component be reused?” These questions are
motivated by basic economics.

The per-reuse cost savings is (OOC minus RC), the
one time cost of construction from scratch compared to
reusing to accomplish the same functionality. There is a
one time added cost of construction for reuse compared
to construction from scratch (BFRC minus OOC). If the
savings of a single reuse to satisfy any particular
requirement (OOC minus RC) were known to be equal or
greater than (BFRC minus OOC) then management
would always develop Build-for-reuse, components
engineered for reuse. However, typically, the per-reuse
cost savings is less than the one time added cost and net
savings occur only after a component is reused a
sufficient number of times to offset the one time added
cost. In order to be cost effective, a reuse policy must
achieve a Build-for-reuse process that maximizes the
opportunity for repeated instances of Reuse and limits the
need for One-off. Management’s challenge is to
determine how much to invest in reuse so that
development savings from realized reuse results is a
positive return on that investment. In the end, the goal is
that systems are developed for less overall cost.

When an organization establishes reuse policy, it is
usually referring to the procurement or production of
components specifically to manage the relative costs of
One-off, Build-for-reuse, and Reuse in its own corporate
culture, marketplace and industry. The reuse reference
grid described below characterizes factors that influence
the prospects for component reuse. Unless these factors
are consciously incorporated into the choice to engineer
for reuse or not, and how, most reuse is accidental, and
unpredictable.

4. Reuse reference grid: costs and benefits

Each cell in the grid illustrates development

technologies and practices that characterize an
organization’s position or an individual project’s position
on the grid. Each cell implies reuse potential and
associated costs of technology adoption and use. While
the position of the cells on the grid depicts their relative
orientation, they are neither completely discrete nor
proportionate. Different projects within the same
organization may be positioned in different cells.

The following sections address the character of each
of the cells along the two dimensions of reuse and
examine what is reused, who reuses it, and how it affects
development.

PDA: Procedure driven abstraction in the application
scope enables reuse focused on individual application
programs. Modelers in this cell use flowcharts,

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

3

hierarchical input-process-output diagrams, etc. Structured
programming language constructs are readily available,
and programmers focus on the description of processing
steps to accomplish a program’s responsibilities. The
individual programmer usually realizes reuse in this cell.
The reuse benefits are limited to modifying or extending
individual programs. Some well structured and
documented program fragments or algorithms may be
reused, but because the scope of focus is the individual
program, cross-program reuse is difficult and unlikely. If
reuse occurs, it usually requires significant adaptation
effort to incorporate artifacts beyond the original
application. Any reuse realized outside the individual
program is more likely accidental than purposeful.

PDS: Procedure driven abstraction in the system scope
acknowledges that application function may recur often
enough to merit formal definition of reusable program
fragments as subroutines or macros. Shared computations
and formulae are designed and implemented once, then
reused. This type of development for reuse is very
common in low level, independently implemented
programming such as libraries for numerical functions,
execution environment interface, and graphics.
Programmers responsible for utility libraries drive this
form of reuse. There is little reuse attributable to user level
requirements because this cell de-emphasizes the data
components of the requirement. Reuse components of this
type tend to be standalone and are locally optimized. They
are highly sensitive to data formats and structures.
Benefits of reuse in this cell lie in the ability to standardize
the use of low level system functions, and these
components often find their way into higher level
programming languages and end-user tools. They are
distinguished from the application scope, PDA, by
increased emphasis on documentation and cataloging.

PDE: Procedure driven abstraction in the enterprise
scope exhibits virtually no extended reuse benefits beyond
the system scope. Functional decomposition at the
enterprise level does not directly affect system
development in any significant reuse capacity. Its primary
result is the formulation of system and subsystem
boundaries with coupling and cohesion implications at the
macro-module level. Source code control systems
maximize reuse activities in this cell to manage
generations of program modifications. This is more of a
cataloging function than an abstraction, improving reuse of
existing artifacts, but not promulgating new ones. This
activity often introduces a librarian function, but this
function is retrospective rather than prospective in regards
to user level requirements.

DDA: Data driven abstraction in the application scope
is well suited to data intensive problems. Individual
programmers are usually trained in application level data

modeling and programming techniques. The decision to
structure information using a particular data structure (ex.
list, graph, binary tree, etc.) usually predetermines the
algorithm(s) to be applied – data structure precedes
process. With or without data dialects like SQL or QBE,
developers may use data typing features in many
programming languages to define program specific data
abstractions. Choosing and designing appropriate data
collections as structures, records or files yield the
primary reuse benefits. Application-specific data
structures can be reused only in nearly identical
applications by copying and adapting their descriptions.

DDS: Data modeling and database management tools
characterize data driven abstraction in the system scope.
The collection, organization, and retrieval of data can be
well accomplished with data meta-languages that treat
data as an element of a disciplined data structure. Data
languages based on SQL and QBE nearly eliminate the
need for procedural programming associated with data
storage or retrieval, allowing the developer to describe
the characteristics of the output rather than the steps to
obtain it. Fourth generation languages, 4GLs, use data
languages as their core, along with extended procedural
constructs to “facilitate” data manipulation intensive
application programming. The benefits of reuse accrue
from the data languages themselves, since they hide most
of the processing details. Modelers focus on those
elements and relationships of data that characterize a
business functional area. The stability of data
relationships in various transaction activities can be
exploited to facilitate reuse, families of reports for
example. Indeed, it is considered “good practice” to
attempt completeness in describing the data in a domain
before beginning individual application development.
Reuse revolves around the capabilities enabled by data
dictionary functionality. A database engine removed
from individual applications manages most stored data
access. Titles such as database administrator (as opposed
to data administrator) usually reflect a focus on data
required for applications rather than for the business. The
stability, accessibility and reliability of the data
description are the primary enablers of reuse.

DDE: Data driven abstraction in the enterprise scope
relies on developing a single, centralized description of
all data in the enterprise domain (sometimes referred to
as a data repository). There may be extensive reuse when
a centralized description is constantly referenced to
define business transactions including collection,
verification, summary, and reporting. 4GLs streamline
system change when they are capable of incorporating
data description changes automatically. Adopting
computer aided systems engineering tools, CASE,
usually requires developing a thorough and competent

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

4

central data description as a first step. Organizations or
projects positioned in this cell often employ data
administrators reflecting a user domain focus. System
modeling in this cell must be further augmented if the
environment requires complex processing, configuration,
or performance aspects. The focus on data abstraction to
the virtual exclusion of process issues leaves wide gaps in
centrally managed system knowledge. This cell enjoys
incremental benefits over those found in the system scope,
DDS.

BDA: Behavior driven abstraction in the application
scope co-opts the reuse devices of PDA and most of those
in DDA. OO programmers use classes to accomplish the
functionality of subprograms and data languages (e.g.
modules, macros, and abstract data types, and source code
generators such as parameterized packages in Ada). The
costs of exploiting this technology result from the learning
curves of OO programming languages, OOPLs, and OO
tools. The expected benefits include greater programmer
productivity and increased intra-program reuse. The
degree of reuse depends on the emphasis given to reuse by
the development team’s management. As in this entire
column of cells, the reuse is primarily focused on
individual programs. But, because OOPLs enable very
flexible sub-classing features, accidental reuse occurs
more often than with procedure driven or data driven
abstraction.

BDS: Behavior driven abstraction in the system scope
enables formal reuse management via class library
development. A cross-system repository of class
definitions screened and tuned for reuse permits
significant cost savings in maintenance and modification.
The added operational cost consists of screening proposed
library artifacts and tuning them for reuse. The
management cost entails encouraging application
developers to envision their individual efforts as
contributions to an overall system object model. The
benefits are few if the developers’ focus is on individual
programs, i.e. they are rewarded for completing programs
rather than for contributing to the cross-system asset of
reusable classes / components. Reuse repository entries
can enjoy extensive reuse when requirements analysis,
modeling, and design adopt component reuse as a goal.
Organizations positioned in this cell incur greater initial
development costs because a reuse adoption effort is an
additive cost. Extramural searches for reusable
components are an added cost. Benefits in this cell accrue
to application development within the local system scope.
Such benefits are primarily realized in subsequent
development efforts. Analysts, modelers and designers
focus on the system scope rather than on individual
applications or programs to maximize reuse. Organizations
in this scope may employ reuse managers and/or

component librarians.
BDE: Behavior driven abstraction in the enterprise

scope raises the level of reuse commitment in analysis,
modeling and design to that of enterprise-wide
consciousness. Description and design decisions affect
the opportunity for reuse throughout the enterprise-wide
information system scope. In this cell, the philosophy of
reuse permeates not only the information system
development activities, but the organization’s strategic
planning. Domain expertise throughout the organization
and sometimes the industry is brought to bear.
Development resources are dedicated to the search for
and exploitation of reuse opportunities across broad
expanses of organizational responsibility and activity.
Reuse efforts focus on user requirements that collectively
define the policies and procedures of the organization.
This effort is no less than an enterprise-wide knowledge
management activity. Organizations in this cell support
enterprise functions titled reuse engineering and
domain/enterprise modeling. These organizational
activities relate to the highest levels of SEI capability
maturity because they involve optimizing the very
process of organizational modeling with a goal of
enterprise-wide reuse [2]. The BDE cell represents the
ultimate undertaking in organizational software reuse.

5. Assessing reuse strategy using the grid

Adopting reuse is not an all or nothing proposition. As

the organizational reuse reference grid demonstrates, the
range of both the costs and benefits of employing reuse
technology vary greatly. The costs and benefits relate as
much to the scope of system management that an
organization adopts as the technology.

Every systems development effort represents a reuse
opportunity. The reuse reference grid facilitates reuse
assessment in three ways: 1) categorizing existing reuse,
2) assessing current reuse levels, and 3) considering
future reuse strategy.

Software teams use the grid as taxonomy, identifying
existing reuse activities and locating each on the grid to
identify current reuse. Reuse awareness is critical in
developing an organizational strategy. Identifying
occurrences of reuse (intended or accidental) is the first
step toward managing their costs and benefits.

Once development efforts in a given management
scope are positioned in the grid, then commonalities and
cross-dependencies can be uncovered that indicate
opportunities for system or enterprise-wide reuse, most
of which may not have been recognized previously.
When managers encourage sharing reuse experiences,
they endorse reuse and promote best practice within their
teams.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

5

Project managers formalize and encourage selected
reuse practices in the grid through measurement and
behavior reinforcement. Designers assess the potential of
extended reuse based upon the current practice; credible
expectations grounded in actual experience. System
architects exploit the overlap of reuse potential by
influencing projects and/or systems, aggregating or
partitioning them based upon managed reuse goals.

Initiating and sustaining a reuse program can be quite
expensive. Reuse potential must be quite high if a project
expects to find cost effectiveness in the upper right of the
reuse reference grid. A reuse project team must examine
its organization’s strategic IS direction. To develop
sufficient reuse opportunity, an organization may have to
adjust its requirement domain by expanding it to adjacent
requirement areas or focusing it to cover more of a
particular vertical market. In this case the reuse reference
grid is employed as an outward looking management
device rather than only inward looking. Management asks
“To what new opportunities in our business or industry-
wide requirement domain can we apply our existing
reusable resources (or the new ones we are considering)?”
Managing the domain of potential reuse is as important as
managing the reuse process. To obtain cost effective reuse,
there must be sufficient requirement repetition achieved
through conscious management of the requirement scope.

In general for an organization or project to pursue reuse
more aggressively they must migrate either up or to the
right (or both) within the organizational reuse reference
grid. As they migrate they incur new costs and meet new
reuse opportunities.

5.1. Advancing abstraction sophistication

Upward migration requires deepening a commitment to

a modeling abstraction or adopting a new one. Moving
from process-driven to data-driven or data-driven to
behavior-driven modeling requires acquiring and
supporting new skills, methods and tools specific to the
modeling abstraction at hand. In large measure the costs
and risks of this migration are confined to the IS
development activity of the organization and thus this
movement is more tactical in nature than strategic.

The maturity of procedure-driven and data-driven
technologies makes immersion and/or migration relatively
low risk. Many data-driven tools, well-researched and
applied theory, and many well-trained and experienced
professionals facilitate incorporating the technologies.

Migrating toward behavior-driven abstractions means
committing to a less-mature evolving theory, a fast
growing and changing inventory of tools, and a relatively
young and inexperienced professional workforce. The risk
level is higher, if not high, depending on the depth of

immersion sought.

5.2 Advancing requirement scope

Migrating an organization to the right within the

organizational reuse reference grid indicates a
commitment to assessing business functionality from a
broader organizational perspective. This increases the
opportunity for broad-based component reuse –
improving the prospects for cost-justified build-for-reuse
activity.

Adopting such a perspective affects project
management because of the multiplication of
interrelationships that must be understood, documented
and modeled. But, perhaps more dramatically, adopting a
broader perspective affects organizational strategy
because the key to widespread reuse is achieving a clear
and well understood organizational direction within
which to forecast future information needs and
market/domain positioning effectively. The systems
under an enterprise mantel of reuse must not only be
effectively interfaced, they must be effectively integrated
in their contribution to the organizational mission.

The choice to set an organization’s reuse policy in the
BDE cell is a bold commitment. Adopting reuse
engineering as a strategic goal reflects more than a
change in system engineering philosophy or the adoption
of a modeling paradigm, it is a choice of business model.
Sherif and Vinze’s [13] found that most barriers to reuse
are caused by inadequate efforts by management to
support and market reuse.

Telecommunications software manufacturer Sodalia’s
experience demonstrates how management can overcome
such barriers [9]. Organized around a comprehensive
reuse commitment, Sodalia exemplifies the integration of
OO technology with reuse engineering. Formed in 1993,
its charter defines a reuse-focused enterprise to deliver a
family of products to a well defined business domain.
Not every organization can be born in Sodalia’s mold.
Evolving an organization toward that mold requires a
carefully managed plan; reuse must remain the focus as
an organization-wide goal [10].

6. Conclusion

Many organizations have placed great emphasis on

languages, tools and technology, but found their reuse
experience disappointing; largely, we believe, because
they gave insufficient emphasis to requirement scope and
failed in their effort to form a clear vision of their reuse
cost and benefit goals. The reuse reference grid can be a
useful tool helping organizations to clarify their reuse
goals and expectations.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

6

Reuse comes in many guises. Strong organizational
reuse management commitment using state of the art data
driven modeling approaches can achieve potent reuse. For
some organizations, this may prove a less costly, lower
risk approach using stable, well-understood technologies.
If the organizational reuse goals are well formed and the
management team is commensurately disciplined, the data
driven abstraction approach in the system, DDS, and
enterprise, DDE, scopes can yield significant levels of
reuse.

Adopting reuse is not an all or nothing proposition. As
the reuse reference grid demonstrates, the range of costs
and benefits of employing reuse vary greatly. These costs
and benefits relate as much to the scope of an
organization’s requirements management as to the
technology. The highest levels of organizational reuse
effectiveness found in the BDE cell are tied to the
adoption of a behavior driven approach to system
modeling and a vision of the business domain as an
integrated whole.

7. References

[1] Arsanjani, A. Developing and Integrating Enterprise

Components and Services. Communications of the ACM, 45 (10),
2002, 31-34.

[2] Bachman, F., Bass, L., Buhman, C., Cornella-Dorda, S.,
Long, F., Robert, J., Seacord, R. and Wallnau, K. Volume II:
Technical Concepts of Component-Based Software Engineering,
Carnegie Mellon University, 2000.

[3] Coad, P. and Yourdon, E. Object Oriented Analysis.
Yourdon Press, Englewood Cliffs, NJ, 1991.

[4] Davis, J. and Morgan, T. Object-Oriented Development at
Brooklyn Union Gas. IEEE Software (January), 1993, 67-74.

[5] Duggan, J. Successfully Selecting Object-Oriented A&D
Tools, Gartner Group, 2002.

[6] Ezran, M., Morisio, M. and Tully, C., Failure and Success
Factors in Reuse Programs: A Synthesis of Industrial
Experiences,. in Proceedings of the 1999 International
conference on Software engineering, 1999, 681 - 682.

[7] Fichman, R.G. and Kemerer, C.F. Object Technology and
Reuse: Lessons from Early Adopters. Computer, 30 (10), 1997,
47-58.

[8] Krueger, C.W. Software Reuse. ACM Computing Surveys,
23 (2), 1992, 131-183.

[9] Mambella, E., Ferrari, R., De Carli, F. and Surdo, A.L.,
An Integrated Approach to Software Reuse Practice. in
Proceedings of the 17th International Conference on Software
Engineering on Symposium on Software Reusability, 1995, 63-
80.

[10] Morisio, M., Ezran, M. and Tully, C., Introducing Reuse
in Companies: A Survey of European Experiences. in
Proceedings of the 17th International Conference on Software

Engineering on Symposium on Software Reusability, 1999, 63-
80.

[11] Pittman, M. Lessons Learned in Managing Object-
Oriented Development. IEEE Software (January). 1993, 43-53.

[12] Rubin, K.S. and Goldberg, A. Object Behavior
Analysis. Communications of the ACM, 35 (9), 1992, 48-62.

[13]Sherif, K and Vinze, A., “Barriers to Adoption of
Software Reuse: A Qualitative Study,” Information and
Management, 2003, 159-175.

Proceedings of the 39th Hawaii International Conference on System Sciences - 2006

7

