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1. RE Project 
Management Tools

project life cycle integration 
methodological 
technological
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Project Life Cycle
Baseline / Waterfall 
Prototyping 

Incremental 
Evolutionary 

Spiral 
Agile
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Baseline / Waterfall
Relies on primarily 
static requirement 
environment 

Vulnerable to 
environmental, 
technological, or 
policy evolution 

Most useful in short 
time frame situations
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Prototyping
Assumes “softness” of 
user expressed 
requirements 

Uncertainty, “risk” 
aversion intent 

Exploratory, 
Experimental, 
Evolutionary
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Incremental
Unitary requirements 
analysis allocated to 
a series of increments 
of system function 

Basically a “phased 
waterfall” approach 

Feedback from each 
increment informs 
the following phases

���8

Thayer & Dorfman 1997



Requirements Engineering Slides Four:

Evolutionary
Like increments the 
prototypes address 
phases of the whole 
system development 

However, each 
increment is put into 
production 

Feedback follows 
extensive experience

���9

Thayer & Dorfman 1997



Requirements Engineering Slides Four:

Spiral
expands the scope of cycle 
focus to process  decisions 
as well as product decisions  
focuses on risk analysis to 
guide process  

revisits objectives, alternatives, 
constraints  frequently  
shapes subsequent cycle phases 
as part of the life cycle process  

It redefines the life cycle 
question  

by subsuming the life cycle as a 
product in  itself  
allows other life cycle models to 
be special  cases
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Thayer & Dorfman 1997

Spiral

05:8 CS460 Software Project Mgmt Les Waguespack, 1997
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Agile Manifesto
1. Customer satisfaction by rapid delivery of useful software 
2. Welcome changing requirements, even late in development 
3. Working software is delivered frequently (weeks rather than months) 
4. Working software is the principal measure of progress 
5. Sustainable development, able to maintain a constant pace 
6. Close, daily co-operation between business people and developers 
7. Face-to-face conversation is the best form of communication (co-

location) 
8. Projects are built around motivated individuals, who should be trusted 
9. Continuous attention to technical excellence and good design 
10. Simplicity 
11. Self-organizing teams 
12. Regular adaptation to changing circumstances
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SCRUM Architecture
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Methodology Support 
“decomposition-driven” 

process oriented - Input/Process/Output -ex: Structured Analysis 
and Design (SADT), Vienna Development Methodology (VDM), “Z” (A 
formal specification model) 
data oriented - ex: Jackson Systems Development (JSD), Entity 
Relationship (E-R) 
control oriented - synchronization, deadlock, exclusion, concurrency, 
process activation/deactivation - ex: Real-Time SADT, Flowcharting 
object-oriented - classes of objects, behavior, interaction - ex: Unified 
Process (UP) 

Agile methodologies: 

SCRUM, Agile unified process (AUP), Dynamic Systems Development 
Method (DSDM), .....  Extreme Programming (XP)  ??
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Technology Support - (CASE) 
production technology 

representation - 
to enable the user to define, describe or change a definition or description of 
an object, relationship or process 

analysis - 
that enables the user to explore, simulate, or evaluate alternate 
representations or  models of objects relationships or processes 

transformation - 
functionality that executes a significant planning or design task, thereby 
replacing or substituting  for a human designer/planner 

coordination technology 
control 

functionality that enables the user to plan for and  enforce rules, policies 
or priorities that will  govern or restrict the activities of team members  
during the planning or design process 

cooperative functionality 
enables the user to exchange  information with another individual(s) for 
the  purpose of influencing (affecting) the concept,  process or product of 
the requirements team
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Requirements Process 
Improvement

Improve what? 
quality, time to market, cost 

Opportunity identification - 
current process problems, improvement goals, process changes, process control 

Typical obstacles - 
stakeholder involvement, missed business needs, management discipline, vague 
responsibilities, weak communication 

Process approaches - 
Six Sigma, Capability Maturity Model (CMM)
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“Have we got the right requirements?” 
Early identification of anomalies, inconsistencies, 
or ambiguities is critical 
The longer a deficiency survives in the system 
development time line - the more it costs to fix 
Budget (time, cost, personnel) estimation 
depends on reliable work definition 
(requirements)

���19

2. Requirement 
Analysis
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Cost to Fix
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TRW, IBM, GTE, and safeguard on the relative cost of finding 

defects early vs. late [24]. 
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Figure 3. The Royce Waterfall Model (1970) 
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Figure 4. Increase in Software Cost-to-fix vs. Phase (1976) 

Unfortunately, partly due to convenience in contracting for software 

acquisition, the waterfall model was most frequently interpreted as a 

purely sequential process, in which design did not start until there 

was a complete set of requirements, and coding did not start until 

completion of an exhaustive critical design review.  These 

misinterpretations were reinforced by government process standards 

emphasizing a pure sequential interpretation of the waterfall model. 

Quantitative Approaches 

One good effect of stronger process models was the stimulation of 

stronger quantitative approaches to software engineering.  Some 

good work had been done in the 1960’s such as System 

Development Corp’s software productivity data [110] and 

experimental data showing 26:1 productivity differences among 

programmers [66]; IBM’s data presented in the 1960 NATO report 

[5]; and early data on distributions of software defects by phase and 

type. Partly stimulated by the 1973 Datamation article, “Software 

and its Impact: A Quantitative Assessment” [22], and the Air Force 

CCIP-85 study on which it was based, more management attention 

and support was given to quantitative software analysis. 

Considerable progress was made in the 1970’s on complexity 

metrics that helped identify defect-prone modules [95][76]; software 

reliability estimation models [135][94]; quantitative approaches to 

software quality [23][101]; software cost and schedule estimation 

models [121][73][26]; and sustained quantitative laboratories such 

as the NASA/UMaryland/CSC Software Engineering Laboratory 

[11]. 

Some other significant contributions in the 1970’s were the in-depth 

analysis of people factors in Weinberg’s Psychology of Computer 

Programming [144]; Brooks’ Mythical Man Month [42], which 

captured many lessons learned on incompressibility of software 

schedules, the 9:1 cost difference between a piece of demonstration 

software and a software system product, and many others; Wirth’s 

Pascal [149] and Modula-2 [150] programming languages; Fagan’s 

inspection techniques [61]; Toshiba’s reusable product line of 

industrial process control software [96]; and Lehman and Belady’s 

studies of software evolution dynamics [12]. Others will be covered 

below as precursors to 1980’s contributions. 

However, by the end of the 1970’s, problems were cropping up with 

formality and sequential waterfall processes. Formal methods had 

difficulties with scalability and usability by the majority of less-

expert programmers (a 1975 survey found that the average coder in 

14 large organizations had two years of college education and two 

years of software experience; was familiar with two programming 

languages and software products; and was generally sloppy, 

inflexible, “in over his head”, and undermanaged [50]. The 

sequential waterfall model was heavily document-intensive, slow-

paced, and expensive to use. 

Since much of this documentation preceded coding, many impatient 

managers would rush their teams into coding with only minimal 

effort in requirements and design. Many used variants of the self-

fulfilling prophecy, “We’d better hurry up and start coding, because 

we’ll have a lot of debugging to do.” A 1979 survey indicated that 

about 50% of the respondents were not using good software 

requirements and design practices [80] resulting from 1950’s SAGE 

experience [25]. Many organizations were finding that their 

software costs were exceeding their hardware costs, tracking the 

1973 prediction in Figure 5 [22], and were concerned about 

significantly improving software productivity and use of well-

known best practices, leading to the 1980’s trends to be discussed 

next. 
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Figure 5. Large-Organization Hardware-Software Cost Trends 

(1973) 

 

2.4 1980’s Synthesis: Productivity and 

Scalability 
Along with some early best practices developed in the 1970’s, the 

1980’s led to a number of initiatives to address the 1970’s problems, 

and to improve software engineering productivity and scalability. 

Figure 6 shows the extension of the timeline in Figure 2 through the 

rest of the decades through the 2010’s addressed in the paper. 
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Where the cost lies . . .
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potential for user value, but determining how they will be best 
configured will involve a lot of product experimentation, shakeout, 
and emergence of superior combinations of system capabilities. 

In terms of future software process implications, the fact that the 
capability requirements for these products are emergent rather than 
prespecifiable has become the primary challenge. Not only do the 
users exhibit the IKIWISI (I’ll know it when I see it) syndrome, but 
their priorities change with time. These changes often follow a 
Maslow need hierarchy, in which unsatisfied lower-level needs are 
top priority, but become lower priorities once the needs are satisfied 
[96]. Thus, users will initially be motivated by survival in terms of 
capabilities to process new work-loads, followed by security once 
the workload-processing needs are satisfied, followed by self-
actualization in terms of capabilities for analyzing the workload 
content for self-improvement and market trend insights once the 
security needs are satisfied. 

It is clear that requirements emergence is incompatible with past 
process practices such as requirements-driven sequential waterfall 
process models and formal programming calculi; and with process 
maturity models emphasizing repeatability and optimization [114]. 
In their place, more adaptive [74] and risk-driven [32] models are 
needed. More fundamentally, the theory underlying software process 
models needs to evolve from purely reductionist “modern” world 
views (universal, general, timeless, written) to a synthesis of these 
and situational “postmodern” world views (particular, local, timely, 
oral) as discussed in [144]. A recent theory of value-based software 
engineering (VBSE) and its associated software processes [37] 
provide a starting point for addressing these challenges, and for 
extending them to systems engineering processes. The associated 
VBSE book [17] contains further insights and emerging directions 
for VBSE processes. 

The value-based approach also provides a framework for 
determining which low-risk, dynamic parts of a project are better 
addressed by more lightweight agile methods and which high-risk, 
more stabilized parts are better addressed by plan-driven methods. 
Such syntheses are becoming more important as software becomes 
more product-critical or mission-critical while software 
organizations continue to optimize on time-to-market. 

Software Criticality and Dependability 

Although people’s, systems’, and organizations’ dependency on 
software is becoming increasingly critical, de-pendability is 
generally not the top priority for software producers. In the words of 
the 1999 PITAC Report, “The IT industry spends the bulk of its 
resources, both financial and human, on rapidly bringing products to 
market.” [123]. 

Recognition of the problem is increasing. ACM President David 
Patterson has called for the formation of a top-priority 
Security/Privacy, Usability, and Reliability (SPUR) initiative [119]. 
Several of the Computerworld “Future of IT” panelists in [5] 
indicated increasing customer pressure for higher quality and vendor 
warranties, but others did not yet see significant changes happening 
among software product vendors. 

This situation will likely continue until a major software-induced 
systems catastrophe similar in impact on world consciousness to the 
9/11 World Trade Center catastrophe stimulates action toward 
establishing account-ability for software dependability. Given the 
high and increasing software vulnerabilities of the world’s current 
financial, transportation, communications, energy distribution, 

medical, and emergency services infrastructures, it is highly likely 
that such a software-induced catastrophe will occur between now 
and 2025. 

Some good progress in high-assurance software technology 
continues to be made, including Hoare and others’ scalable use of 
assertions in Microsoft products [71], Scherlis’ tools for detecting 
Java concurrency problems, Holtzmann and others’ model-checking 
capabilities [78] Poore and others’ model-based testing capabilities 
[124] and Leveson and others’ contributions to software and system 
safety. 

COTS, Open Source, and Legacy Software 

A source of both significant benefits and challenges to 
simultaneously adopting to change and achieving high dependability 
is the increasing availability of commercial-off-the-shelf (COTS) 
systems and components. These enable rapid development of 
products with significant capabilities in a short time. They are also 
continually evolved by the COTS vendors to fix defects found by 
many users and to competitively keep pace with changes in 
technology. However this continuing change is a source of new 
streams of defects; the lack of access to COTS source code inhibits 
users’ ability to improve their applications’ dependability; and 
vendor-controlled evolution adds risks and constraints to users’ 
evolution planning. 

Overall, though, the availability and wide distribution of mass-
produced COTS products makes software productivity curves look 
about as good as hardware productivity curves showing exponential 
growth in numbers of transistors produced and Internet packets 
shipped per year. Instead of counting the number of new source 
lines of code (SLOC) produced per year and getting a relatively flat 
software productivity curve, a curve more comparable to the 
hardware curve should count the number of executable machine 
instructions or lines of code in service (LOCS) on the computers 
owned by an organization. 

 

Figure 8. U.S. DoD Lines of Code in Service and Cost/LOCS 

Figure 8 shows the results of roughly counting the LOCS owned by 
the U.S. Department of Defense (DoD) and the DoD cost in dollars 
per LOCS between 1950 and 2000 [28]. It conservatively estimated 
the figures for 2000 by multiplying 2 million DoD computers by 
100 million executable machine instructions per computer, which 
gives 200 trillion LOCS. Based on a conservative $40 billion-per-
year DoD software cost, the cost per LOCS is $0.0002. These cost 
improvements come largely from software reuse. One might object 
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Boehm, B., A Spiral Model of Software Development and  Enhancement, Computer, 
May 1988, pp. 61-72. 	
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checklists are useful 
in normalizing lists of 
requirements 

interaction matrices 
uncover - 

overlaps - may indicate 
redundancy 
conflicts - may indicate 
inconsistency

���22

Requirement Relationships
R1 R2 R3 R4 R5 R6 R7

R1
R2 O C
R3 C
R4 O
R5 O C
R6 O
R7 O

O - overlap      C - conflict
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Potential requirement deficiencies 
premature design - confusing requirement 
with solution 
multi-issue requirement - convolution 
questionable necessity - “dream vs need?” 
business goal / process inconsistency 
ambiguity 
reality check concrete testability

���23
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3. Negotiation
Requirements analysis usually raises 
“wrinkles” to be ironed out 

differences in stakeholder understanding / 
realization of the business model / process 
differences in stakeholder held priorities 
need for added clarity in requirement 
specification 
need to revisit scope of project with client

���24



Requirements Engineering Slides Four:

Whose requirements are these?

Until the client’s authority “signs off” 
on the requirements document all you 
have is a “draft” that may be the client’s 
requirements. 
The requirements document is an 
AGREEMENT that all parties 
understand and describes the same 
system.
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4. Validation

“Have we got the requirement right?” 
review 
prototype testing 
model validation 
requirements testing
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5. Managing 
Requirements

Convergence 
Stability Analysis 
Equilibrium 
Identification, Storage and Reuse 
Change management 
Traceability
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Convergence
Requirement 
elicitation and 
documentation is a 
process of discovery 
and refinement - a 
progressive 
approximation 

Change is inevitable 
due to policy, market, 
government, culture, 
etc.

���28

Reality
Description
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Stability Analysis
Changes occur for many reasons 

errors, conflicts, inconsistencies 
customer / user “epiphany” 
technical, schedule, cost issues 
customer priorities 
environment, domain changes 
organizational changes
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Equilibrium
The volume and rate of change in the description 
can indicate requirements in flux which require 
additional attention 
Descriptions that maintain limited change can be 
said to be in “equilibrium” 
Project experience can be used to set these 
stability thresholds

���30
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Identification, Storage 
and Reuse

Document: “If it’s not recorded, it doesn’t 
exist!” 
Catalog: “If you can’t find it, it doesn’t 
exist!” 
Index: “If it’s too much work to look for it, it 
doesn’t exist!” 
Cross-Reference: “If you don’t know what it 
relates to, you won’t think to look for it!”
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Typical Requirements Tracking Data 
identification 
description / explanation 
entry date 
change history 
change source 
reason / rationale for change 
status: proposed, under review, accepted, rejected 
precedent and antecedent requirements / changes 
analyst comments to the community 
author
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Change Management
Requirements knowledge is a valuable asset 

change can help its value accrue 
haphazard change can erode its value 

As the requirement resource builds 
(matures) change should be treated with 
growing care and diligence retaining the 
whole stakeholder community’s 
concurrence
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Each Change is its own Project 

verify change request validity / authority 
identify affected system components 
draft changes due to coordinated 
dependencies 
propose change specifics 
accept / reject the change with clear 
documentation
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Change Information Management 

the volume, complexity and volatility of 
evolving requirements information can tax 
the most well organized team 
repository tools can mean the difference 
between a well structured resource and a 
“house of cards” 
repository tools will also include “practice” 
standards for the team and stakeholders to 
normalize the quality across the board (more to come)
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Traceability
What is supposed to be done? 
Who told us to do it? 
When did we know we would do it? 
Why did we choose to (or not to) do it? 
What other things are affected by it? 
How will we know these things in the future?
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An unstructured collection of documents, contacts, interviews, 
requirements specifications, change requests, change decisions 
and supporting commentary quickly becomes a “haystack” -
virtually unsearchable. 

The database, indexing, cross-references, and model diagrams all 
contribute visibility and connectivity to the requirement 
resource. 

The value of the requirement resource (size, longevity, quality, 
user community, problem complexity, post-implementation 
customer  commitment) influences the investment decision in the 
automation and stewardship of the resource.
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All is Cost/Benefit
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Wrap Up
1.Requirements Engineering Project Management Tools 

1. project life cycle integration 
2. methodological 
3. technological 

2.Requirement Analysis 
3.Negotiation 
4.Validation 
5.Managing Requirements 

1. Convergence 
2. Stability Analysis 
3. Equilibrium 
4. Identification, Storage and Reuse 
5. Change management 
6. Traceability
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