
Requirements Engineering Slides Four:

Requirements Engineering
Process

Les Waguespack, Ph.D.

���1

Slides Four

Requirements Engineering Slides Four:

Copyright and References

Requirements Engineering, Kotonya & Sommerville, Wiley, Chichester, West Sussex, England, ISBN
0-471-97208-8

Software Requirements Engineering, Second Edition, Richard H. Thayer and Merlin Dorfman, eds., pp. 7-22. Los
Alamitos, Calif.: IEEE Computer Society Press, 1997.

Use Case Modeling, Bittner & Spence, Addison-Wesley / Pearson Education, Inc., Boston, MA, ISBN
0-201-70913-9

Writing Effective Use Cases, Cockburn, Addison-Wesley, Boston, MA, ISBN 0-201-70225-8

UML and the Unified Process - Practical Object-Oriented Analysis and Design, Arlow & Neustadt, Addison-
Wesley / Pearson Education, Inc., Boston, MA, ISBN 0-201-77060-1

Business Modeling With UML, Eriksson & Penker, Wiley, Indianapolis, IN, ISBN 0-471-29551-5

UML 2 Toolkit, Eriksson, Penker, Lyons & Fado, Wiley, Indianapolis, IN, ISBN 0-471-46361-2

Enterprise Modeling With UML Designing Successful Software Through Business Analysis, Addison-
Wesley, Reading, MA, ISBN 0-201-43313-3

Object Oriented Systems Engineering, Waguespack, course notes CS390, CS460, CS630, CS771, Computer
Information Systems Department, Bentley College, Waltham, MA.

���2

The arrangement, presentation, original illustrations and organization of the materials are
copyrighted by Leslie J. Waguespack, Ph.D. with all rights reserved (©2007). Derivations and
excerpts in these materials are referenced as follows:

Requirements Engineering Slides Four:

Outline
1. Requirements Engineering Project

Management Tools
2. Requirement Analysis
3. Negotiation
4. Validation
5. Managing Requirements

���3

Requirements Engineering Slides Four:

1. RE Project
Management Tools

project life cycle integration
methodological
technological

���4

Requirements Engineering Slides Four:

Project Life Cycle
Baseline / Waterfall
Prototyping

Incremental
Evolutionary

Spiral
Agile

���5

Requirements Engineering Slides Four:

Baseline / Waterfall
Relies on primarily
static requirement
environment

Vulnerable to
environmental,
technological, or
policy evolution

Most useful in short
time frame situations

���6

Thayer & Dorfman 1997

Requirements Engineering Slides Four:

Prototyping
Assumes “softness” of
user expressed
requirements

Uncertainty, “risk”
aversion intent

Exploratory,
Experimental,
Evolutionary

���7

Thayer & Dorfman 1997

Requirements Engineering Slides Four:

Incremental
Unitary requirements
analysis allocated to
a series of increments
of system function

Basically a “phased
waterfall” approach

Feedback from each
increment informs
the following phases

���8

Thayer & Dorfman 1997

Requirements Engineering Slides Four:

Evolutionary
Like increments the
prototypes address
phases of the whole
system development

However, each
increment is put into
production

Feedback follows
extensive experience

���9

Thayer & Dorfman 1997

Requirements Engineering Slides Four:

Spiral
expands the scope of cycle
focus to process decisions
as well as product decisions
focuses on risk analysis to
guide process

revisits objectives, alternatives,
constraints frequently
shapes subsequent cycle phases
as part of the life cycle process

It redefines the life cycle
question

by subsuming the life cycle as a
product in itself
allows other life cycle models to
be special cases

���10

Thayer & Dorfman 1997

Requirements Engineering Slides Four: ���11

Thayer & Dorfman 1997

Spiral

05:8 CS460 Software Project Mgmt Les Waguespack, 1997

Spiral Model

Determine
Objectives,
Alternatives,
Constraints

Evaluate
alternatives,
identify,
resolve risks

Develop, verify
next-level
product

Plan next phases

risk

analysis

prototype prototype prototype

operational

prototype

risk

analysis

risk

analysis

risk

analysis

simulations, models, benchmarks
concept of

operation software

requirement
requirement

validation
software

product design

design

validation,

verification

requirements & life

cycle plan

development

plan

integration and test

plan

plan the

next phase

detailed

design

code
unit

test
integration

and

test
Acceptance

test
implementation

Cumulative cost

progress through
steps

commitment
partition

Requirements Engineering Slides Four: ���12

Requirements Engineering Slides Four:

Agile Manifesto
1. Customer satisfaction by rapid delivery of useful software
2. Welcome changing requirements, even late in development
3. Working software is delivered frequently (weeks rather than months)
4. Working software is the principal measure of progress
5. Sustainable development, able to maintain a constant pace
6. Close, daily co-operation between business people and developers
7. Face-to-face conversation is the best form of communication (co-

location)
8. Projects are built around motivated individuals, who should be trusted
9. Continuous attention to technical excellence and good design
10. Simplicity
11. Self-organizing teams
12. Regular adaptation to changing circumstances

���13

Beck, Kent; et al. (2001). "Principles behind the Agile Manifesto". Agile Alliance. Retrieved 6 June 2010.

http://www.agilemanifesto.org/principles.html

sprint planning	

SCRUM Ontology

process

product

people

product backlog	

artifact

SCRUM master	

role

product owner	

role

burn down	

chart	

artifact

 sprint team	

role

sprint	

ceremony

sprint review	

ceremony

daily	

SCRUM meeting	

ceremony

sprint planning	

ceremony

sprint	

backlog	

artifact

sprint	

deliverable	

artifact

Sutherland, J. and Schwaber, K., The Scrum Papers: Nuts, Bolts, and Origins of an Agile Process, http://
assets.SCRUMfoundation.com/ down- loads/2/SCRUMpapers.pdf?1285932052, Retrieved May 29, 2011.

SCRUM Architecture

collaboration

artifact flow

product
owner	

role

SCRUM	

master	

role

team	

member	

role

sprint	

planning
ceremony

sprint
review
ceremony

daily SCRUM
meeting
ceremony

product
backlog	

artifact

burn down
chart	

artifact

sprint
backlog	

artifact

sprint
deliverable	

artifact

sprints

Requirements Engineering Slides Four:

Methodology Support
“decomposition-driven”

process oriented - Input/Process/Output -ex: Structured Analysis
and Design (SADT), Vienna Development Methodology (VDM), “Z” (A
formal specification model)
data oriented - ex: Jackson Systems Development (JSD), Entity
Relationship (E-R)
control oriented - synchronization, deadlock, exclusion, concurrency,
process activation/deactivation - ex: Real-Time SADT, Flowcharting
object-oriented - classes of objects, behavior, interaction - ex: Unified
Process (UP)

Agile methodologies:

SCRUM, Agile unified process (AUP), Dynamic Systems Development
Method (DSDM), Extreme Programming (XP) ??

���16

Requirements Engineering Slides Four:

Technology Support - (CASE)
production technology

representation -
to enable the user to define, describe or change a definition or description of
an object, relationship or process

analysis -
that enables the user to explore, simulate, or evaluate alternate
representations or models of objects relationships or processes

transformation -
functionality that executes a significant planning or design task, thereby
replacing or substituting for a human designer/planner

coordination technology
control

functionality that enables the user to plan for and enforce rules, policies
or priorities that will govern or restrict the activities of team members
during the planning or design process

cooperative functionality
enables the user to exchange information with another individual(s) for
the purpose of influencing (affecting) the concept, process or product of
the requirements team

���17

Requirements Engineering Slides Four:

Requirements Process
Improvement

Improve what?
quality, time to market, cost

Opportunity identification -
current process problems, improvement goals, process changes, process control

Typical obstacles -
stakeholder involvement, missed business needs, management discipline, vague
responsibilities, weak communication

Process approaches -
Six Sigma, Capability Maturity Model (CMM)

���18

Requirements Engineering Slides Four:

“Have we got the right requirements?”
Early identification of anomalies, inconsistencies,
or ambiguities is critical
The longer a deficiency survives in the system
development time line - the more it costs to fix
Budget (time, cost, personnel) estimation
depends on reliable work definition
(requirements)

���19

2. Requirement
Analysis

Requirements Engineering Slides Four:

Cost to Fix

���20

TRW, IBM, GTE, and safeguard on the relative cost of finding

defects early vs. late [24].

SYSTEM

REQUIREMENTS

TESTING

CODING

PROGRAM
DESIGN

ANALYSIS

PRELIMINARY

PROGRAM

DESIGN

SOFTWARE

REQUIREMENTS

OPERATIONS

PRELIMINARY
DESIGN

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

USAGE

Figure 3. The Royce Waterfall Model (1970)

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
e
la

ti
v
e
 c

o
s
t

to
 f

ix
 d

e
fe

c
t

2

1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller software projects

Larger software projects

• Median (TRW survey)

80%

20%

SAFEGUARD

GTE

IBM-SSD

•

•

•

•

•

•

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
e
la

ti
v
e
 c

o
s
t

to
 f

ix
 d

e
fe

c
t

2

1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller software projects

Larger software projects

• Median (TRW survey)

80%

20%

SAFEGUARD

GTE

IBM-SSD

••

••

••

•

•

•

Figure 4. Increase in Software Cost-to-fix vs. Phase (1976)

Unfortunately, partly due to convenience in contracting for software

acquisition, the waterfall model was most frequently interpreted as a

purely sequential process, in which design did not start until there

was a complete set of requirements, and coding did not start until

completion of an exhaustive critical design review. These

misinterpretations were reinforced by government process standards

emphasizing a pure sequential interpretation of the waterfall model.

Quantitative Approaches

One good effect of stronger process models was the stimulation of

stronger quantitative approaches to software engineering. Some

good work had been done in the 1960’s such as System

Development Corp’s software productivity data [110] and

experimental data showing 26:1 productivity differences among

programmers [66]; IBM’s data presented in the 1960 NATO report

[5]; and early data on distributions of software defects by phase and

type. Partly stimulated by the 1973 Datamation article, “Software

and its Impact: A Quantitative Assessment” [22], and the Air Force

CCIP-85 study on which it was based, more management attention

and support was given to quantitative software analysis.

Considerable progress was made in the 1970’s on complexity

metrics that helped identify defect-prone modules [95][76]; software

reliability estimation models [135][94]; quantitative approaches to

software quality [23][101]; software cost and schedule estimation

models [121][73][26]; and sustained quantitative laboratories such

as the NASA/UMaryland/CSC Software Engineering Laboratory

[11].

Some other significant contributions in the 1970’s were the in-depth

analysis of people factors in Weinberg’s Psychology of Computer

Programming [144]; Brooks’ Mythical Man Month [42], which

captured many lessons learned on incompressibility of software

schedules, the 9:1 cost difference between a piece of demonstration

software and a software system product, and many others; Wirth’s

Pascal [149] and Modula-2 [150] programming languages; Fagan’s

inspection techniques [61]; Toshiba’s reusable product line of

industrial process control software [96]; and Lehman and Belady’s

studies of software evolution dynamics [12]. Others will be covered

below as precursors to 1980’s contributions.

However, by the end of the 1970’s, problems were cropping up with

formality and sequential waterfall processes. Formal methods had

difficulties with scalability and usability by the majority of less-

expert programmers (a 1975 survey found that the average coder in

14 large organizations had two years of college education and two

years of software experience; was familiar with two programming

languages and software products; and was generally sloppy,

inflexible, “in over his head”, and undermanaged [50]. The

sequential waterfall model was heavily document-intensive, slow-

paced, and expensive to use.

Since much of this documentation preceded coding, many impatient

managers would rush their teams into coding with only minimal

effort in requirements and design. Many used variants of the self-

fulfilling prophecy, “We’d better hurry up and start coding, because

we’ll have a lot of debugging to do.” A 1979 survey indicated that

about 50% of the respondents were not using good software

requirements and design practices [80] resulting from 1950’s SAGE

experience [25]. Many organizations were finding that their

software costs were exceeding their hardware costs, tracking the

1973 prediction in Figure 5 [22], and were concerned about

significantly improving software productivity and use of well-

known best practices, leading to the 1980’s trends to be discussed

next.

100

80

60

40

20

0

1955 1970 1985

Hardware

Software

Year

% of

total cost

Figure 5. Large-Organization Hardware-Software Cost Trends

(1973)

2.4 1980’s Synthesis: Productivity and

Scalability
Along with some early best practices developed in the 1970’s, the

1980’s led to a number of initiatives to address the 1970’s problems,

and to improve software engineering productivity and scalability.

Figure 6 shows the extension of the timeline in Figure 2 through the

rest of the decades through the 2010’s addressed in the paper.

15

Boehm, B., Software engineering. IEEE Trans. Computers, 100(25):1226-1241, 1976.

Requirements Engineering Slides Four:

Where the cost lies . . .

���21

potential for user value, but determining how they will be best
configured will involve a lot of product experimentation, shakeout,
and emergence of superior combinations of system capabilities.

In terms of future software process implications, the fact that the
capability requirements for these products are emergent rather than
prespecifiable has become the primary challenge. Not only do the
users exhibit the IKIWISI (I’ll know it when I see it) syndrome, but
their priorities change with time. These changes often follow a
Maslow need hierarchy, in which unsatisfied lower-level needs are
top priority, but become lower priorities once the needs are satisfied
[96]. Thus, users will initially be motivated by survival in terms of
capabilities to process new work-loads, followed by security once
the workload-processing needs are satisfied, followed by self-
actualization in terms of capabilities for analyzing the workload
content for self-improvement and market trend insights once the
security needs are satisfied.

It is clear that requirements emergence is incompatible with past
process practices such as requirements-driven sequential waterfall
process models and formal programming calculi; and with process
maturity models emphasizing repeatability and optimization [114].
In their place, more adaptive [74] and risk-driven [32] models are
needed. More fundamentally, the theory underlying software process
models needs to evolve from purely reductionist “modern” world
views (universal, general, timeless, written) to a synthesis of these
and situational “postmodern” world views (particular, local, timely,
oral) as discussed in [144]. A recent theory of value-based software
engineering (VBSE) and its associated software processes [37]
provide a starting point for addressing these challenges, and for
extending them to systems engineering processes. The associated
VBSE book [17] contains further insights and emerging directions
for VBSE processes.

The value-based approach also provides a framework for
determining which low-risk, dynamic parts of a project are better
addressed by more lightweight agile methods and which high-risk,
more stabilized parts are better addressed by plan-driven methods.
Such syntheses are becoming more important as software becomes
more product-critical or mission-critical while software
organizations continue to optimize on time-to-market.

Software Criticality and Dependability

Although people’s, systems’, and organizations’ dependency on
software is becoming increasingly critical, de-pendability is
generally not the top priority for software producers. In the words of
the 1999 PITAC Report, “The IT industry spends the bulk of its
resources, both financial and human, on rapidly bringing products to
market.” [123].

Recognition of the problem is increasing. ACM President David
Patterson has called for the formation of a top-priority
Security/Privacy, Usability, and Reliability (SPUR) initiative [119].
Several of the Computerworld “Future of IT” panelists in [5]
indicated increasing customer pressure for higher quality and vendor
warranties, but others did not yet see significant changes happening
among software product vendors.

This situation will likely continue until a major software-induced
systems catastrophe similar in impact on world consciousness to the
9/11 World Trade Center catastrophe stimulates action toward
establishing account-ability for software dependability. Given the
high and increasing software vulnerabilities of the world’s current
financial, transportation, communications, energy distribution,

medical, and emergency services infrastructures, it is highly likely
that such a software-induced catastrophe will occur between now
and 2025.

Some good progress in high-assurance software technology
continues to be made, including Hoare and others’ scalable use of
assertions in Microsoft products [71], Scherlis’ tools for detecting
Java concurrency problems, Holtzmann and others’ model-checking
capabilities [78] Poore and others’ model-based testing capabilities
[124] and Leveson and others’ contributions to software and system
safety.

COTS, Open Source, and Legacy Software

A source of both significant benefits and challenges to
simultaneously adopting to change and achieving high dependability
is the increasing availability of commercial-off-the-shelf (COTS)
systems and components. These enable rapid development of
products with significant capabilities in a short time. They are also
continually evolved by the COTS vendors to fix defects found by
many users and to competitively keep pace with changes in
technology. However this continuing change is a source of new
streams of defects; the lack of access to COTS source code inhibits
users’ ability to improve their applications’ dependability; and
vendor-controlled evolution adds risks and constraints to users’
evolution planning.

Overall, though, the availability and wide distribution of mass-
produced COTS products makes software productivity curves look
about as good as hardware productivity curves showing exponential
growth in numbers of transistors produced and Internet packets
shipped per year. Instead of counting the number of new source
lines of code (SLOC) produced per year and getting a relatively flat
software productivity curve, a curve more comparable to the
hardware curve should count the number of executable machine
instructions or lines of code in service (LOCS) on the computers
owned by an organization.

Figure 8. U.S. DoD Lines of Code in Service and Cost/LOCS

Figure 8 shows the results of roughly counting the LOCS owned by
the U.S. Department of Defense (DoD) and the DoD cost in dollars
per LOCS between 1950 and 2000 [28]. It conservatively estimated
the figures for 2000 by multiplying 2 million DoD computers by
100 million executable machine instructions per computer, which
gives 200 trillion LOCS. Based on a conservative $40 billion-per-
year DoD software cost, the cost per LOCS is $0.0002. These cost
improvements come largely from software reuse. One might object

20

!
U.S. DoD Lines of Code in Service and Cost/LOCS

Boehm, B., A Spiral Model of Software Development and Enhancement, Computer,
May 1988, pp. 61-72. 	

LOCS -Lines of code in service

Requirements Engineering Slides Four:

checklists are useful
in normalizing lists of
requirements

interaction matrices
uncover -

overlaps - may indicate
redundancy
conflicts - may indicate
inconsistency

���22

Requirement Relationships
R1 R2 R3 R4 R5 R6 R7

R1
R2 O C
R3 C
R4 O
R5 O C
R6 O
R7 O

O - overlap C - conflict

Requirements Engineering Slides Four:

Potential requirement deficiencies
premature design - confusing requirement
with solution
multi-issue requirement - convolution
questionable necessity - “dream vs need?”
business goal / process inconsistency
ambiguity
reality check concrete testability

���23

“Ironing out the Wrinkles”

Requirements Engineering Slides Four:

3. Negotiation
Requirements analysis usually raises
“wrinkles” to be ironed out

differences in stakeholder understanding /
realization of the business model / process
differences in stakeholder held priorities
need for added clarity in requirement
specification
need to revisit scope of project with client

���24

Requirements Engineering Slides Four:

Whose requirements are these?

Until the client’s authority “signs off”
on the requirements document all you
have is a “draft” that may be the client’s
requirements.
The requirements document is an
AGREEMENT that all parties
understand and describes the same
system.

���25

Requirements Engineering Slides Four:

4. Validation

“Have we got the requirement right?”
review
prototype testing
model validation
requirements testing

���26

Requirements Engineering Slides Four:

5. Managing
Requirements

Convergence
Stability Analysis
Equilibrium
Identification, Storage and Reuse
Change management
Traceability

���27

Requirements Engineering Slides Four:

Convergence
Requirement
elicitation and
documentation is a
process of discovery
and refinement - a
progressive
approximation

Change is inevitable
due to policy, market,
government, culture,
etc.

���28

Reality
Description

Requirements Engineering Slides Four:

Stability Analysis
Changes occur for many reasons

errors, conflicts, inconsistencies
customer / user “epiphany”
technical, schedule, cost issues
customer priorities
environment, domain changes
organizational changes

���29

Requirements Engineering Slides Four:

Equilibrium
The volume and rate of change in the description
can indicate requirements in flux which require
additional attention
Descriptions that maintain limited change can be
said to be in “equilibrium”
Project experience can be used to set these
stability thresholds

���30

Reality
Description

Requirements Engineering Slides Four:

Identification, Storage
and Reuse

Document: “If it’s not recorded, it doesn’t
exist!”
Catalog: “If you can’t find it, it doesn’t
exist!”
Index: “If it’s too much work to look for it, it
doesn’t exist!”
Cross-Reference: “If you don’t know what it
relates to, you won’t think to look for it!”

���31

Requirements Engineering Slides Four:

Typical Requirements Tracking Data
identification
description / explanation
entry date
change history
change source
reason / rationale for change
status: proposed, under review, accepted, rejected
precedent and antecedent requirements / changes
analyst comments to the community
author

���32

Requirements Engineering Slides Four:

Change Management
Requirements knowledge is a valuable asset

change can help its value accrue
haphazard change can erode its value

As the requirement resource builds
(matures) change should be treated with
growing care and diligence retaining the
whole stakeholder community’s
concurrence

���33

Requirements Engineering Slides Four:

Each Change is its own Project

verify change request validity / authority
identify affected system components
draft changes due to coordinated
dependencies
propose change specifics
accept / reject the change with clear
documentation

���34

Requirements Engineering Slides Four:

Change Information Management

the volume, complexity and volatility of
evolving requirements information can tax
the most well organized team
repository tools can mean the difference
between a well structured resource and a
“house of cards”
repository tools will also include “practice”
standards for the team and stakeholders to
normalize the quality across the board (more to come)

���35

Requirements Engineering Slides Four:

Traceability
What is supposed to be done?
Who told us to do it?
When did we know we would do it?
Why did we choose to (or not to) do it?
What other things are affected by it?
How will we know these things in the future?

���36

Requirements Engineering Slides Four:

An unstructured collection of documents, contacts, interviews,
requirements specifications, change requests, change decisions
and supporting commentary quickly becomes a “haystack” -
virtually unsearchable.

The database, indexing, cross-references, and model diagrams all
contribute visibility and connectivity to the requirement
resource.

The value of the requirement resource (size, longevity, quality,
user community, problem complexity, post-implementation
customer commitment) influences the investment decision in the
automation and stewardship of the resource.

���37

All is Cost/Benefit

Requirements Engineering Slides Four:

Wrap Up
1.Requirements Engineering Project Management Tools

1. project life cycle integration
2. methodological
3. technological

2.Requirement Analysis
3.Negotiation
4.Validation
5.Managing Requirements

1. Convergence
2. Stability Analysis
3. Equilibrium
4. Identification, Storage and Reuse
5. Change management
6. Traceability

���38

