
Object Modeling with UML Slides Two:

Object Modeling with UML
Fundamentals

Les Waguespack, Ph.D.

1

Slides Two

Object Modeling with UML Slides Two:

Copyright and References

UML 2 and the Unified Process 2nd Ed - Practical Object-Oriented Analysis and Design, Arlow & Neustadt,
Addison-Wesley / Pearson Education, Inc., Boston, MA, ISBN 0-321-32127-8

UML 2 Toolkit, Eriksson, Penker, Lyons & Fado, Wiley, Indianapolis, IN, ISBN 0-471-46361-2

UML 2.0 - Superstructure, Object Management Group, http://www.omg.org/cgi-bin/doc?formal/05-07-04

Object Oriented Analysis, 2nd Ed, Peter Coad and Edward Yourdan, Prentice-Hall, 1991.ISBN 978-0136299813

Business Modeling With UML, Eriksson & Penker, Wiley, Indianapolis, IN, ISBN 0-471-29551-5

Enterprise Modeling With UML Designing Successful Software Through Business Analysis, Addison-Wesley,
Reading, MA, ISBN 0-201-43313-3

Use Case Modeling, Bittner & Spence, Addison-Wesley / Pearson Education, Inc., Boston, MA, ISBN
0-201-70913-9

Writing Effective Use Cases, Cockburn, Addison-Wesley, Boston, MA, ISBN 0-201-70225-8

Object Oriented Systems Engineering, Waguespack, course notes CS390, CS460, CS630, CS771, Computer
Information Systems Department, Bentley College, Waltham, MA.

2

The arrangement, presentation, original illustrations and organization of the materials are
copyrighted by Leslie J. Waguespack, Ph.D. with all rights reserved (©2007). Derivations and
excerpts in these materials are referenced as follows:

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04

Object Modeling with UML Slides Two:

Outline
1. Overview
2. Diagramming in UML 2

2.1 Class
2.2 Use Case
2.3 Sequence
2.4 Activity
2.5 Thumbnails of all the others

3

Object Modeling with UML Slides Two:

1. Overview
Object-Oriented Modeling is based on a system of
concepts that define the existence and relationships of
facts within a defined system boundary.
The system of concepts is called the Object-Oriented
Paradigm.
OOM is independent of UML or any other OO language:
C++, Java, Smalltalk, C#, ...
The Object-Oriented Paradigm is stable, well understood
and documented.
UML is an evolving, growing tool attempting to address
a growing and evolving industry of system
development.

4

Object Modeling with UML Slides Two: 5

01/25/2007 02:03 PMExam Info

Page 1 of 1http://www.omg.org/uml-certification/exam_info.htm

140 Kendrick Street,
Building A Suite 300
Needham, MA 02494, U.S.A.

Ph:+1-781-444 0404
Fax: +1-781-444 0320
Email: info@omg.org

[Overview] [FAQs] [Exam Info] [OCUP Endorsements] [Register]

OMG Certified UML Professional

The Exams

There are three OCUP Exams - Fundamental, Intermediate and Advanced. Each Exam tests your
knowledge of a different subset of the UML. Certification indicates the following abilities and qualifications.

Follow the links below for detailed information on each Exam.

Fundamental You can work with the most commonly encountered UML elements
You can create simple UML models
You are qualified to be a member of a UML Development Team.

Intermediate You can work with a broad range of UML elements
You can create complex UML models
You are qualified to be a senior member of a UML Development Team.

Advanced You can work with the full range of UML elements
You can create extremely large, complex UML models
You are qualified to manage a UML Development Team.

[Overview] [FAQs] [Exam Info] [OCUP Endorsements] [Register]

Copyright © 1997-2007 Object Management Group, Inc. All Rights Reserved. For questions about the WEBSITE , please contact webmaster@omg.org For TECHNICAL
questions, please contact webtech@omg.org This site is best viewed at 800x600 pixels with Netscape Navigator or Internet Explorer versions 4.0 or later or any browser

capable of viewing JavaScript and CSS 2.0. The site is using DHTML JavaScript Menu By Milonic.com. Last Updated Wednesday, January 17, 2007

http://www.omg.org/uml-certification/exam_info.htm

http://www.omg.org/uml-certification/exam_info.htm
http://www.omg.org/uml-certification/exam_info.htm

Object Modeling with UML Slides Two: 6

Page 1

C O V E R AG E M AP F O R T H E OM G-C E R T I F I E D U M L
P R O F E S S I O N A L F U N D A M E N T A L E X A M

Topic Area Allocation

 Topic Area -->

Topic Area

Percent of

test this
topic

should

represent

1.0 Class Diagrams (Basic) 30%

2.0 Activity Diagrams (Basic) 20%

3.0 Interaction Diagrams (Basic) 20%

4.0 Use Case Diagrams (Basic) 20%

5.0 Miscellaneous basic notions 10%

Total 100%

Topic Area Details

Objectives and Topic Subareas (by Topic)

1.0 Class Diagrams (Basic)

 Objective -->
1.1 Demonstrate the ability to understand the core
modeling concepts of UML. Classes::Kernel

Topic Subarea--> 1 Root modeling concepts of UML diagrams (Sec 7.2)

 2 Namespaces (Sec 7.3)

 3 Multiplicities (Sec 7.4)

 4 Expressions (Sec 7.5)

 5 Constraints (Sec 7.6)

 6 Instances (and Object Diagrams)(Sec 7.7)

 7 Classifiers (includes Generalization) (Sec 7.8)

 8 Features (Sec 7.9)

 9 Operations (Sec 7.10)

10 Classes (Sec 7.11)

11 Data types (Sec 7.12)

12 Packages (and Package Diagrams)(Sec 7.13)

Object Modeling with UML Slides Two:

UML Diagrams
UML is a collection of diagramming disciplines that define the static and
dynamic characteristics of a problem or system

Structure diagrams
Class - business objects and their structures
Composite Structure - nested contents of structured classifiers
Component - modules and replaceable parts of system
Deployment - maps software architecture to physical system architecture
Object - depicts the state of objects at a point in time
Package - a collection of classes forming a cohesive subsystem of concepts

Dynamic diagrams
Activity - object oriented “flowcharts”
Interaction - diagrams that depict the “active” relationship between objects

Sequence - time-ordered inter-object messages that complete a task
Communication - message traffic among classes in a class structure
Interaction Overview - show high level flow of control between interactions
Timing - real-time dependent object relationships

Use Case - user / system interactions / interfaces
State Machine - depicts stable points in process flow yielding predictable conditions

7

Object Modeling with UML Slides Two:

2. Diagramming in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

8

2 new in UML2

Object Modeling with UML Slides Two:

Elements of UML 2

Specifications
graphical - diagrams and icons to support visualization
textual - descriptions of the semantics of elements

Adornments
additions to basic modeling elements that highlight important details

Common Divisions
classifier and instance - categorization / realization of model elements
interface and implementation - separating the “how” from the “what”

Extensibility mechanisms
constraints - allow adding new rules to modeling elements
stereotypes - allow adding new modeling elements beyond UML 2
tagged values - allow adding new properties to model elements
UML profiles - allow grouping the above as a “modeling template”

9

Object Modeling with UML Slides Two:

“Ease of Use” vs. “Ease of Use”
UML 1.x was developed primarily to support modeling in the
analysis and design phases of software system development

UML 2.0 is a refinement of UML consistent with OMG’s
Model Driven Architecture philosophy that allows UML
models to be input, transformed, and reconfigured
automatically by model compilers.

UML 2.0 achieves this extended functionality by adding
significant rigor, detail and complexity to the syntax and
semantics of the modeling language.

UML is a TOOL and as such every artisan, technician, and
builder will need to assess the breadth and width of UML 2.0
that is appropriate to the task and normalize that “subset”
among all the collaborators.

10

Object Modeling with UML Slides Two:

2.1 Class Diagramming in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

11

2 new in UML2

Object Modeling with UML Slides Two:

Business
Model

Business
Process
Model

business
visionary

business
process

modeler

systems
analyst

business
reengineer

business
process

reengineer

so!ware
developer

Traditional
Computer Information

System
Development Path

systems
professional

system
specification

So!ware
Models

the
Business

computerized
operations

professional
operations

The Abstraction
Focus in this Course

Object Modeling with UML Slides Two:

Sequence
Diagram

Use Case

Model - Go - ‘Round

Modeling is an iterative process
prototype
refine
validate

13

Class Diagram

Sequence
Diagram

Class Diagram

Use Case

Object Modeling with UML Slides Two:

Class Diagramming
A.K.A.

“Domain Modeling”
In the overall approach, class diagramming achieves these ends:

Identifying business objects and determining their sameness and difference

Identifying class structures that explain the sameness and difference of objects

Identifying association structures that define accessibility

Defining attributes that describe and identify distinct objects

Defining services / behaviors that describe the objects actions and
responsibilities in the problem domain

14

Object Modeling with UML Slides Two:

Class Diagramming

Finding classes and objects
Identifying class structures
Identifying object structures
Defining class and object attributes
Defining class and object behaviors
(services / methods)

15

Object Modeling with UML Slides Two:

Finding Classes and Objects
Object. [something thrown in the way (Medieval Latin), a
casting before (Latin)] A person or thing to which action,
thought, or feeling is directed. Anything visible or tangible; a
material product or substance.

a uniquely identifiable, attribute value bearing, “living instance”

Class. [a division of the Roman people (Latin); a calling ,
summons (Greek)] A number of people or things grouped
together because of certain likenesses or common traits.
[Webster's, 1977]

a template, a “cookie cutter”, that defines the structure (memory and
behavior) of objects derived from it

16

Object Modeling with UML Slides Two:

Naming Classes and their Objects

Class symbol denotes a
defined identical structure
(attributes and services)
that all instances of this
class (objects) will share.
Notice the italic class name!

Class and Object* symbol
represents both the defined
structure of the class but,
also, represents any and all
instances that may exist in
the problem domain. Notice
that the class name is NOT
italic!

17

ClassName

Services

Attributes

ClassName

Services

Attributes

An abstract description
or template for objects
of this class. No instances
of this class are expected
to be found in the problem
domain.

Also called an
“Abstract Class.”

The abstraction and all
the instances of this
class that ARE expected to
be found in the problem
domain.

Also called a
“Concrete Class.”

*class and object is not a standard term in
UML, but it better explains the element’s

purpose.

Object Modeling with UML Slides Two:

“Class and Object” Drawn
A name used in the standard
vocabulary of the problem
domain. A singular noun, or
adjective and noun. Each
instance is one item not a
group. User client-familiar
terms.
The characteristics of this
class and the specific values
for an instance. These are
defined in the attribute
defining activity.
These are the process
functions performed by this
object requested by other
objects. They are defined in
the service defining
activity.

18

ClassName

Services

Attributes

Object Modeling with UML Slides Two:

Drawing an Object
An object is an
instance of a class
that possesses the
identical structure
defined in the class,
but retains its own
values for attributes.
The <name> is
underlined to denote it
is an object.
An object may be
anonymous (class
name only),
indeterminate (object
name only), or specific
(object name and
class).

19

ClassName

Services

Attributes

Variations of <name>
Anonymous:

:ClassName

Indeterminate:
myObject

Specific:
myObject: ClassName

As a convention in class names
each and every “word” in the name
begins with a capital letter because
there are no “special characters” to
separate them while in an object’s
name the very first letter is lower case.

Objects do not appear in class diagrams!

Object Modeling with UML Slides Two:

Where to look for “class and objects”
Observe first-hand: follow the client around performing
normal domain activities, "walk a mile in the client's shoes".
Seek out problem domain "experts" and have them describe the
problem domain to you, what makes it interesting, what is
most important (and why), what scenarios are most
significant (and why)?
Refer to previous specifications (hopefully OO), reuse Objects
when relevant to this system.
Seek out other systems with similar behavior or
responsibilities.
Read and re-Read the requesting document, identify the
MISSION and the PURPOSE of the system.
Prototype the object list and review it with the user and
domain experts, refine, refine, refine!

20

What to look for ...
Structures: finding structures has its own activity in OOA,
Generalization-Specialization and Whole-Part are very fruitful.
Other Systems: are there "external-terminators" with which interaction
is initiated or responded to, other persons, organizations, or systems?
Devices: what devices will the system interact with?; not computer
implementation specific devices like terminals and disk drives but,
controls, sensors, monitors in a functional context.
Things or events remembered: collect a list of all things or events that are
"remembered" in the domain, identified by numbers or referred to in
documents.
Roles played: what roles do humans play in relationship to the system,
does one individual play more than one role?
Operational procedures: are there mechanical or clerical procedures that
must be followed?
Sites: are particular locations or contexts important to events?

21

Object Modeling with UML Slides Two:

In order to pare down the list of potential objects apply the
following tests:

Needed Remembrance
Are records of this object really used, is the record input to some defined
function?

Needed Behavior
If the object is remembered it will at least have to service "create, connect,
access, and release" messages, what else?

(Usually) Multiple Attributes
Objects are important because they are the "hubs" of function, one attribute
objects should seem suspicious!

(Usually) More Than One Object in a Class
Objects with "proper" names (this object or her object) are probably instances
but not classes in themselves!

22

What to challenge . . .

Object Modeling with UML Slides Two:

In order to pare down the list of potential objects apply the
 Always-Applicable Attributes

Do all instances of this class have a set of identical attributes? Differing sets
of attributes indicate Gen-Spec. Structure!

Always-Applicable Services
Do all instances of this class have a set of identical services? Differing sets of
services indicate Gen-Spec. Structure!

Domain-based Requirements
Requirements that will exist regardless of the design or implementation
choices, (i.e. capacity, speed, precision, metrics. (Keep a file of design notes to
assure these are heeded.))

Not Merely Derived Results
Avoid merely derived results, ("client's age" in a system that stores date of
birth). Temporary files or results are design issues.

23

What (else) to challenge . . .

Object Modeling with UML Slides Two:

Identifying Class Structures
“Inheritance”

Structure: A manner of organization. [Webster's 1977]

Structure is an expression of problem-domain complexity,
pertinent to the system responsibilities.

The term "structure" is used as an overall term, describing both
Generalization-Specialization (Gen-Spec) Structure between classes and
Whole-Part Structure between objects (instances of classes).

Gen-Spec is a relationship between classes and therefore
Inheritance only occurs between classes (not objects*) !!

24

*objects derive their characteristics from the class to which
they belong, but the attributes and behavior are expressed

as a result of instantiation rather than inheritance!

Object Modeling with UML Slides Two:

Drawing Generalization /
Specialization

Classes define the structure
of the objects that will be
instantiated from them,
they are templates
The sameness / difference
that may exist between
classes is drawn to explicitly
define how two classes are
the same and are different.
Their sameness is defined by
the structure of the
generalization.
Their difference is explicit in
the distinctive structure of
the specialization.

25

Generalization

Services

Attributes

Specialization

additional services or
distinct behavior

additional attributes

Specialization

additional services or
distinct behavior

additional attributes

Also called:

Parent Class,
Super Class, or
Super-ordinate
Class.

Also called:

Child Class,
SubClass, or
Sub-ordinate
Class.

Object Modeling with UML Slides Two:

Gen-Spec & Inheritance
Gen-Spec is a structural relationship between CLASSES
Gen-Spec defines the sameness of the child class with the
parent class

everything the parent class can remember (attributes), so can the child
not the values of attributes - only the structure (values are in objects!)

every NAMED behavior of the parent class is available from the child
Gen-Spec defines how the child is explicitly different

the child may have additional attributes not found in the parent class
the child may have additional behaviors (services) not in the parent
the child may implement a behavior NAMED in the parent differently

same Service Name (same name and same parameters)
different WAY of implementing the behavior

also known as OVERRIDING or OVERLOADING a parent’s service

26
We’re talking class here not object !

Object Modeling with UML Slides Two:

Per
ha

ps
sho

uld
 be

 ...

Gen-Spec Structure

27

Person

payParkingFine

idNumber
name
address
phone

Student

payTuition
attendClass

major
minor
classCode

Teacher

teachClass
administerExam

officeNumber
department

Student

payTuition
attendClass
payParkingFine

idNumber
name
address
phone
major
minor
classCode

Teacher

teachClass
administerExam
payParkingFine

idNumber
name
address
phone
officeNumber
department

Object Modeling with UML Slides Two:

Gen-Spec Strategies

Consider each class as a generalization. For its potential
specializations ask:

Is it in the problem domain?

Is it within the system 's responsibilities?
Will there be inheritance?
Will the specialization meet the "What to consider and challenge" criteria
for Class and Objects?

Consider each class as a specialization. For its potential
generalizations ask the same questions!

28

Object Modeling with UML Slides Two:

Hierarchy vs.
Lattice

The most common form of
gen-spec is hierarchy.
Lattice may be used to:

highlight additional
specs
explicitly capture
commonality
modestly increase
model complexity

29

Person

idNumber
name
address
phone

payParkingFine

Student

payTuition
attendClass

major
minor
classCode

StaffMember

teachClass
administerExam

officeNumber
department

StudentTeacher

supervisor

OJTStudent

assignedParking

Notice the
abstract class?

Object Modeling with UML Slides Two:

Person

idNumber
name
address
phone

payParkingFine

Student

payTuition
attendClass

major
minor
classCode

StaffMember

teachClass
administerExam

officeNumber
department

StudentTeacher

supervisor

OJTStudent

assignedParking

Avoid Multiple
Inheritance!

Multiple inheritance
makes further model
evolution difficult
Most apparent need for
multiple inheritance is
better handled using “role
models” which are
separate objects carrying
the shared functionality
Most programming
languages handle multiple
inheritance very
awkwardly
Avoid it at all costs !!

30

Waguespackism!

Object Modeling with UML Slides Two:

Inheritance and Polymorphism
“the child may implement a behavior NAMED in the parent
differently”

same Service Name (same name and same parameters)
different WAY of implementing the behavior

also known as OVERRIDING or OVERLOADING a parent’s service

Naming a service in a parent class sets a precedent
if the implementation is omitted we call this an “abstract service”
every child-class must (somehow) implement that NAMED behavior
each child-class may use a different implementation
the “abstract service” (method) leads to POLYMORPHISM

the same named service implemented differently in different classes
clients of this service use it in the abstract ignoring any difference in
implementation

31We’re still talking class here not object !

Object Modeling with UML Slides Two:

Class Hierarchy

32

Person

Student Employee

Undergrad

Graduate

Alumni

Staff

Faculty

Object Modeling with UML Slides Two:

Inheritance

33

Person

Student Employee

Undergrad

Graduate

Alumni

Staff

Faculty

Object Modeling with UML Slides Two:

Polymorphism

34

Person

Student Employee

Undergrad

Graduate

Alumni

Staff

Faculty

sally:Student

calculateTuition
degreeAudit

“Calculate Tuition” message

“Degree Audit” message

Object Modeling with UML Slides Two:

Identifying Object Structures

Associations are relationships between OBJECTS
Associations define the awareness that one object has for
another
Associations are defined by the strength of a relationship

Composition - the parts’ existence depends on the whole
delete the whole and you must delete all the parts

Aggregation - the whole manages a collection of parts
the parts exist on their own without need for the whole

Instance Connection* (simple association) - one object knows the other
one object knows another exists and can send it messages

Every association requires a defined cardinality
one to one!, one to many!, and many to many ?!

35Now we’re talking about objects!

*Instance Connection is another very
useful term but not formally part of UML.

Object Modeling with UML Slides Two:

Drawing Associations
Association is a basic method of organization in human
thinking. It is helpful in identifying objects at the edge of the
problem domain, and at the edges of system responsibilities. It
can group together Class and Objects based upon whole-part
meaning.
The notations are directional, so that the Structure could be
drawn at any angle; however, consistently placing the whole
higher and the parts lower produces an easier to understand
model. Note that not only may there be several parts but,
they may be of different kinds as well!
Note that if a parent class is a whole, a part, or has an
instance connection then any of its child classes are equally
capable.

36

Object Modeling with UML Slides Two:

Drawing Associations
 Composition Aggregation “Instance Connection”

37

Degree

degreeAudit

name
office
phoneNumber
abbreviation

RequiredCourse

checkPrerequisite

idNumber
name
address
phone

1

1, m

CourseSection

enroll

sectionNumber
building
classroom
time

Student

payParkingFine

idNumber
name
address
phone

0, 5

0, 35

ScheduleBooklet

addCourse
deleteCourse

year
term

Student

payParkingFine

idNumber
name
address
phone

0. 1

0, m

Now we’re talking about objects derived from these classes!

Object Modeling with UML Slides Two:

Whole-Part Examples

38

Engine

Aircraft

0, 1

0, 4

Professor

Department

1

1, m

An aircraft has 0 (glider) to 4
engines. An engine belongs to
zero or one aircraft (an engine
cannot be shared!).

A department has 1 or more
professors (must have one)
and each professor belongs to
a department!

Now we’re talking about objects derived from these classes!

Object Modeling with UML Slides Two:

Associations and Cardinality

Cardinality in associations is a critical aspect of defining the
business rules
Cardinality is critically important when defining how
information will be stored and later retrieved as in a
database
“One to one” and “One to Many” relationships reflect a clear
and complete understanding of the business rules
“Many to Many” relationships will eventually need further
explanation
In general, any “many to many” relationship will need to be
converted to one or more “one to many” relationships before a
model can actually be implemented in programming!

39

Object Modeling with UML Slides Two:

Instance Connection Example

40

LegalEvent Clerk

LegalEvent

AccessEvent

dateTime
accessType

Clerk

Perhaps should be ...

read

modify

m m

m m

m m

Object Modeling with UML Slides Two:

Example continued . . .

41

LegalEvent AccessEvent

dateTime
accessType

Clerk

Perhaps should be ...

1, m 0,m

LegalEvent

AccessEvent

dateTime
accessType

Clerk

m m

11

Object Modeling with UML Slides Two:

Whole-Part Strategies

Investigating whole-part may point out the need for a Class
and Object, perhaps one not even mentioned in the "requesting
document" from the client.
What to Look for:

Assembly-Parts
(e.g. aircraft/engines; bicycle/[handle bars, wheels, pedals], building/rooms)

Container-Contents
(e.g. aircraft/[pilot, cargo item, fuel, passenger]; safety kit/[flare, bandage,
medicine]

Collection-Members (an varieties)
(e.g. class/[teacher, student]; bus route/bus stop; project plan/phase)
{additional constraint: ordered collection}

42Now we’re talking about composition and aggregation of objects!

Object Modeling with UML Slides Two:

What to consider / challenge...

Consider each Object in the class as a whole. For its potential
part(s), ask:

Is it in the problem domain?

Is it within the system's responsibilities?
Does it capture more than just status value?
If not, then just add an attribute!

Does it provide a useful abstraction in dealing with the problem domain?

Consider each Object in the class as a part. For its potential
whole, ask the same questions!

43

Object Modeling with UML Slides Two:

Defining Attributes
Attribute: any property,
quality, or characteristic
that can be ascribed to a
person or thing. [Webster's
1977]
An attribute is some data
(state information) for
which each Object in a Class
has its own value.
Attributes describe values
(state) kept within an
Object, to be exclusively
manipulated by the Services
of that Object.
The Attributes and Services
are treated as an intrinsic
whole.

44

ClassName

Services

Attributes

ClassName

Services

Attributes

Object Modeling with UML Slides Two:

Identifying Attributes

What is the Object in a Class responsible for knowing?

For each Object ask:
How am I described in general?

How am I described in this problem domain?

How am I described in the context of this system 's responsibilities?

What do I need to know?

What state information do I need to remember over time?

What states can I be in?

45

Object Modeling with UML Slides Two:

More about Attributes
What characteristics should attributes themselves have?

Attributes capture "atomic concepts.”
The motivation for expressing an "atomic concept" is to produce a simpler
model for human review with fewer attribute names, and natural data
groupings for easier assimilation.

Defer to design - Normalization
Defer compromises between introducing new tables to eliminate data
redundancy (normalization) and achieving acceptable performance.

Defer to design - Identification mechanisms
Defer coding schemes and artificial key design. Capture mandatory coding
scheme if present.

Defer to design - Holding a re-calculable Attribute over time
Just specify the recalculation Service and decide later if the value should be
stored.

46

Object Modeling with UML Slides Two:

More Attribute Strategies
Attributes (with Services) guide the definition of Classes:

"Not applicable?", then revisit Object's Gen-Spec.
Recheck each Object with only one attribute.
Check each attribute for repeating values.

Instance Connections behave much like attributes
Do not model foreign keys needed for connections as attributes!

Treat Instance Connections as 1-1, 1-m and m-m relations:
Check each many to many Instance Connection asking what Attributes
might describe the connection.
Check each Instance Connection between Objects in the same Class.
Check multiple Instance Connections between Objects.
Check for additional needed Instance Connections.

47

Object Modeling with UML Slides Two:

Defining Services
Service*: an activity carried on to provide people with the use
of something. [Webster's 1977]
Service: a specific behavior that an Object is responsible for
exhibiting.
Services and Attributes combine to abstract the principle of
"change over time".
The fact that Services reside in Objects abstracts the
principle of "similarity of function" and "immediate causation."
Services also provide necessary communication between
Objects.
Every "data processing " system has some PROCESSING.
Define Services:

identify Object states
identify required Services
identify Message Connections
specify the Services

48

*Service is another term commonly used not formally in UML.
UML would call this an “operation” sometimes a “method.”

Object Modeling with UML Slides Two:

Standard Required Services
Algorithmically Simple Services:

Create an Object:
This Service checks the values against the constraints; then if AOK, create
the new instance of the Object; then returns a result

Connect an Object:
This Service connects (disconnects) and Object with another. It establishes or
breaks a mapping between Objects.

Access an Object:
This Service gets or sets the value of an Object's Attribute(s).

Release an Object:
This Service releases (disconnects and deletes) an Object.

Algorithmically Complex Services:
Calculate:

This Service calculates the results from Attributes of the Object. Access to
other Objects may be needed to complete the Service.

Monitor:
This Service monitors an external system or device; it may have
asynchronous signaling responsibilities.

49

Object Modeling with UML Slides Two:

Describing Services
The description of the Service may take on a variety of
forms: prose, pseudo-code, flow-diagrams, decision logic, state
transition, programming language syntax (C++, Java, C#, SmallTalk, etc.).
Except where definite prescribed procedures are known focus
on the "What" rather than on the "How"!
Use a consistent verb tense and mood (present imperative).
"Future" references are not descriptions of Service
responsibility as much as extended specification of
requirements not yet addressed.
State dependent actions should fully express the state
context: "Precondition", "trigger," and "terminate."

50

Object Modeling with UML Slides Two:

Documentation vs. Diagrams
The class diagram is a very useful modeling tool

It can be a white board “mock-up”
It can be the back of a bar napkin “pipe dream”
It can be the back of an envelope “notion to be completed later”

A diagram is complete documentation -- NOT!!
Each element of a diagram requires a prose description

class - abstract or concrete
generalization - specialization
attribute - valid values, range constraints
service - prose, pseudo-code, Java, Smalltalk, C#
association - composition (whole-part), aggregation, instance connection
cardinality - required versus optional relationships

The prose explains how the diagram element accurately reflects the “ real
world “ business rule that being documented

51

Object Modeling with UML Slides Two:

Commonly Used Adornments
Class symbols are often replaced by
adornments that represent some
aspect of their role in the model

boundary (interface)
provides communication with elements
outside the structure being modeled

control
describes a class/object that implement
policy applying business rules and
controlling execution

entity
represents a class/object whose
“remembered contents” must persist beyond
a single “execution” of this structure

Stereotypes
model elements that obey extended
assumptions defined by team or problem
profile can “follow a stereotype!”

52

Control Class/Object

Boundary Class/Object

Entity Class/Object

NameOf

NameOf

NameOf

<<StereotypeName>>

Object Modeling with UML Slides Two:

You Need to be able to Explain:
Class

parent, child, super, sub, super-ordinate, subordinate
abstract Class

Object
Attribute

atomicity, re-calculable results
Service

operation
method
abstract service

Generalization-Specialization
class hierarchy
inheritance
multiple inheritance

Polymorphism
Association

whole-part
composition
aggregation

instance connection
cardinality

53

Object Modeling with UML Slides Two:

2.2 Use Case Diagramming in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

54

2 new in UML2

Object Modeling with UML Slides Two:

Sequence
Diagram

Use Case

Model - Go - ‘Round

Modeling is an iterative process
prototype
refine
validate

55

Class Diagram

Sequence
Diagram

Class Diagram

Use Case

Object Modeling with UML Slides Two:

Requirements Engineering
“Requirements tell us WHAT is happening in the problem space,
but not necessarily HOW it is happening!”

Functional Requirements
::= what behavior the system should demonstrate

e.g. accept payment, issue receipts, record inventory changes

Non-Functional Requirements
::= a specific property or constraint on the system

e.g. web-based interface, email receipts, handle at least 5,000 catalog entries

Requirements Activities
Eliciting
Documenting
Maintaining

56

Object Modeling with UML Slides Two:

Requirements Elicitation
A complete description of a system is no less complex than the
real system itself
Our task is to construct useful MODELS of real systems from
which we can build computer systems that support the real
system’ s functions
Our MODELS must necessarily

filter out some details that are not computer system relevant
describe the system behavior as the user experiences it
try to identify the rules that define what system behavior is possible and
what is not (all , everyone, always, never, nobody, none)

Our Models must be recognizable and understandable by the
users whose goals and objectives we are supporting

57

Object Modeling with UML Slides Two:

Use Case Model
A Use Case Model is a way of capturing requirements.

“A Use Case describes the interaction of some actor with the functional
capabilities of the system”

Use cases depend on three concepts -
System Boundary - what behavior is relevant to the modeling
Actors - who initiates, participates in, and/or receives the result of
system behavior
A description of system behavior to achieve the desired results . . .

actions
their ordering
which are required or optional
what constitutes success
what constitutes failure

Documenting a Use Case requires a diagram and specification

58

Object Modeling with UML Slides Two:

system name

Use Case Diagram
A Use Case diagram is a short-hand depiction of the actors,
system behavior, and system boundaries involved in a use case

Actors
Use Cases
Relationships
System Boundary

59

use case

Actor
System Boundary

Relationship

Object Modeling with UML Slides Two:

Mail Order System

Use Case Diagram Example

60

Place Order

Customer
Shipping Company

Dispatcher

Cancel Order

Check
Order Status

Send Catalog

Ship Product

Object Modeling with UML Slides Two:

Project Glossary

Use Case activities are the front line in gathering the user
terms and jargon

Resist using terms other than those familiar to the user since
users will be the final judge of model accuracy

Capture terms that seem to be synonyms or homonyms as
these will cause confusion as modeling progresses

Creating a project glossary to collect these terms and their
definitions serves not only this use case, but the entire
modeling effort

61

Object Modeling with UML Slides Two:

Use Case Specification

Use Case Diagrams are good for discussion sessions and “hand
waving”
Use Case Specifications are the meat of documenting
requirements - (clear, concise, complete)
Use Case Specification is a prose (text) description

use case name - a means of uniquely naming the use case
actor list - identifying all the persons or other systems involved
preconditions - what must be in place for the use case to be possible
flow of events - what actions occurs for the use case to succeed (or fail)
postconditions - what must be in place after this use case completes

62

Object Modeling with UML Slides Two:

Use Case Specification Example

63

Use case: Manage Basket
actors: Customer
Preconditions:
1. The shopping basket is not empty
2. The shopping basket contents are visible

Flow of events:
1. the customer selects an item in the basket
2. the customer selects an action:
 2.1 “delete item:” the system removes the item
 2.2 “change quantity:” the system updates the quantity
3. the customer confirms the changes

Postconditions:
1. The basket contents have been visibly updated

Describing Ordered Actions

64

Alternative action flows
“IF” and “SELECT” can be
used to make choices of
actions
“FOR each” and “WHILE”
are also options for lists

“Alternate Flow” may be
more convenient than
complex or nested branching
in the Flow of events

Notice that each
alternate flow may
require its own
postconditions

Use case: Manage Basket

actors: Customer

Preconditions:
1. The shopping basket is not empty
2. The shopping basket contents are visible

Flow of events:
1. the customer selects an item in the basket
2. the customer selects an action:
 2.1 “delete item:” the system removes the item
 2.2 “change quantity:” the system updates the quantity
3. the customer confirms the changes

Postconditions:
1. The basket contents have been updated

Alternate Flow of events:
1. the customer selects “Log out”

Postconditions:
1. The basket is empty
2. The customer is not logged in

Complex Use Cases w/ Scenarios
A scenario is one path
through a use case flow of
events
The primary scenario
(”Happy Path”) is the most
common or usual of
behaviors expected
Secondary scenarios depict
paths with the same
preconditions but result of
departures from the
primary scenario
If a scenario is possible, it is
not an exception it is
normal!

65

Use case: Checkout

actors: Customer

Preconditions: . .

Primary Scenario:
1. the customer selects “go to checkout”
2. system displays customer order
3. the customer is asked to log in with their customer id
4. The system displays customer details
5. The customer is asked to verify credit card information
6. The customer confirms order and payment

Secondary Scenarios:
1. The basket is empty
2. The customer id is not found
3. The credit card has expired
4. The customer chooses not to confirm the order and payment

Postconditions: . . .

Use Case Modularization

A use case may be needed to
accomplish the function of a
more complex business
activity

validating a user’s id
computing sales/tax
totals

A use case may be employed
like a “subroutine” within
another use case with the
“includes” stereotype

66

Mail Order System

Place Order

Customer
User Log In

Check Order Status

<<includes>>

<<in
clud

es>
>

Use Case Generalization

Use Cases can be the same or
different from other use
cases
Use Case Gen-Spec is a useful
modeling tool
Parent/Child use cases
capture the sameness and
difference that is needed in
the class diagram

67

Find Product

Find DVD Find Book

Child Use Case Element Inherits can Add can Override
Relationship yes yes no

Precondition yes yes yes

Postcondition yes yes yes

Step in main flow yes yes yes

Alternative Flow yes yes yes

Attribute yes yes no

Operation yes yes yes

Extension Points

An alternative to Gen-Spec
for use cases is the
<<extend>> stereotype
The “Extension Use Case”
describes the “added
behavior” that the
extension point condition
requires
A choice of extension may be
denoted by “conditions” on
the “extends arrow”

68

Mail Order System

Place Order
extension point

out of stock

Customer

Back Order

<<extend>>
(out of stock)

(> $10)
Cancel Order

<<extend>>
(out of stock)

(<= $10)

Alistair Cockburn ‘s
use case template
Variations are used
to highlight
particular issues in
modeling this
project
Whichever
template you use,
clarity of
expression is the
key to success!

69

Use Case Template A. Cockburn

Page -3- Humans and Technology HaT TR96.03a (98.10.26)

Table format:

USE CASE # < the name is the goal as a short active verb phrase>

Goal in Con-
text

<a longer statement
of the goal in context
 if needed>

Scope & Level <what system is being considered black box under design>
<one of : Summary, Primary Task, Subfunction>

Preconditions <what we expect is already the state of the world>

Success End
Condition

<the state of the world upon successful completion>

Failed End
Condition

<the state of the world if goal abandoned>

Primary,
 Secondary Ac-
tors

<a role name or description for the primary actor>.
<other systems relied upon to accomplish use case>

Trigger <the action upon the system that starts the use case>

DESCRIPTION Step Action

1 <put here the steps of the scenario
from trigger to goal delivery,and any cleanup afte>

2 <...>

3

EXTENSIONS Step Branching Action

1a <condition causing branching> :
<action or name of sub.use case>

SUB-
VARIATIONS

Branching Action

1 <list of variation s>

RELATED
INFORMATION

<Use case name>

Priority: <how critical to your system / organization>

Performance <the amount of time this use case should take>

Frequency <how often it is expected to happen>

Channels to ac-
tors

<e.g. interactive, static files, database, timeouts>

OPEN ISSUES <list of issues
awaiting decision
affecting this use case >

Due Date <date or release needed>

...any other
management
information...

<...as needed>

Superordinates <optional, name of use case(s) that includes this one>

Subordinates <optional, depending on tools,
links to sub.use cases>

Object Modeling with UML Slides Two:

You need to be able to Explain:
Requirements Engineering
Use Case

actor
system boundary
actor / system relationship

Project Glossary
Use Case Diagram
Use Case Specification

preconditions
postconditions
flow of events
alternate flow
scenario

Use Case Extension Points
<<includes>>
<<extends>>

70

Object Modeling with UML Slides Two:

2.3 Sequence Diagramming in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

71

2 new in UML2

Object Modeling with UML Slides Two:

Sequence
Diagram

Use Case

Model - Go - ‘Round

Modeling is an iterative process
prototype
refine
validate

72

Class Diagram

Sequence
Diagram

Class Diagram

Use Case

Object Modeling with UML Slides Two:

Sequence Diagram

Sequence Diagrams are an extended form of Communication
Diagram

Communication Diagrams show actual objects and their relationships
Sequence Diagrams show the sequence of messages and events that are
permitted between objects of specific classes

 Sequence Diagrams use the classes and their services defined
in the Class Diagrams
Sequence Diagrams explain the actions required to accomplish
the specific responsibility of a class service including the help
from objects of other classes

73

Object Modeling with UML Slides Two:

Object Interaction w/ Messages

74

anObject:ExampleClass anotherObject:OtherClass

instance or
classifier role

1.1: doSomething (this, that)

object life line message

message flow

point of activation / creation

focus of control
(activation)

optional result

Time

Message Syntax

Sender requests service
from the receiver using a
message
message indicates

message sequencing
iteration †
receiver’s service
parameters †∆
constraints †

75

1.1 *[i := 1..n] doSomething (this, that) { constraint }

Sen
der

Rece
ive

r
message message flow

† optional

∆ if the service or
operation name is
“overloaded” then
the parameter list
must be included
to distinguish the
service
addressed.

Object Modeling with UML Slides Two:

Sequence Expression
The sequence expression defines the ordering of messages
depicted in a sequence diagram
A series of integers separated by periods “ . “

Each integer represents the order of messages sent from a particular
activation in an object life line
Each time a service invokes a new activation in the receiver’s life line a
new integer is added to the list for any messages that that activation
sends
The number of integers indicates the “nesting” of activations
The value of the integer indicates the order of the messages sent from a
single activation

Example: 1.3.2: “ 2nd message of the activation caused by the
3rd message of the activation caused by the first message“
be patient!!!

76

Object Modeling with UML Slides Two:

Iteration Expression

This is an optional part of a message designation
There is no formal syntax for iteration, but this works well
for those familiar with programming language syntax

[i := 1..n] - - - iterate the message “n “ times

[i := 1..8] - - - iterate the message exactly 8 times
[while (some boolean expression)] - - - “ do while “

[until (some boolean expression)] - - - “ do until “
[for each (collection of objects)] - - - send one message for each object
found in the collection

77

Object Modeling with UML Slides Two:

Receiver Service / Parameters
The service name found in the message is the name of a
service provided by the receiving object

message takes on the “present imperative” tense
the sender is “commanding” the receiver to perform a service
Note that the message is being sent from a service currently “executing”
in the activation of the sender

Parameters are defined in the class diagram when the service
is specified for a class

parameters may be typed or un-typed
parameters may be simple values derived from attributes
parameters may be object references derived from associations

As a model matures parameters, typing and object references
clarify and bring into focus the actual implementation details
needed in design

78

Object Modeling with UML Slides Two:

Constraint

This is an optional part of a message designation
Message constraints indicate a condition or state that the
receiving object must have for the message to “make sense”
Some standard constraint values are used in UML for common
situations of object creation, deletion and temporary use

{new} - - - an instance is created by the message interaction
{destroyed} - - - an instance is destroyed by the interaction
{transient} - - - an instance is created, but is destroyed once the
activation of its service is completed

In some instances only the constraint (as a stereotype) may
be used to indicate the simple purpose of a message

<<create>> or <<destroy>>

79

Self-Delegaton
Self-Delegation is the
situation that the receiver
of a message is also the
sender of a message
Since the message causes a
new activation, the new
activation symbol is
“nested” on top of the
sender’s activation
The response is optional
If the new activation sends
messages: add an sequence
segment to the sequence
expression

80

anObject:
ExampleClass

3: someService

3.1: serviceOfSelf

3.1.1: serviceOfOther

optional response
to self

Conditional Messages

Messages may be sent on
condition

“ if (bool) send message “
guard condition

[bool] send message
the bool must be true to
allow the message to be
sent

81

anObject:
ExampleClass

3: someService
3.1: serviceOfSelf

3.1.2: if not (bool) serviceOfOther

3.1.1: if (bool) serviceOfOther

optional response
to self

Concurrency
The arrow heads on message
flows indicate synchronous
or asynchronous messages

synchronous messages
require the sender to wait
(do nothing) until the
activation caused by the
message is completed
asynchronous messages
cause an activation in
the receiver but do not
require the send to wait

the sender and
receiver’s activations
execute concurrently

82

synchronous

asynchronous

anObject:
ExampleClass

3: someService
3.1: serviceOfSelf

3.1.2: if not (bool) serviceOfOther

3.1.1: if (bool) serviceOfOther

optional response
to self

Instance Deletion

At some point an object’s
usefulness may end

The object deletion symbol
indicates that not only has
the activation ended, but
the object no longer exists

Notice the life line ends!

83

anObject:Exam
pleClass

anotherObject:Ot
herClass

1.1: removeObject (x, y)

Actors in Sequence Diagrams

84

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Frames to Denote Subsequences

85

Subsequence A

Sequence Diagram in Action

86

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Sequence Diagram in Action

87

anObject:
ExampleClass

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

Actors in Sequence Diagrams

88

anObject:
ExampleClass

1: startIt

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

Sequence Diagram in Action

89

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

Sequence Diagram in Action

90

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

Sequence Diagram in Action

91

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.2.1: doIt

Sequence Diagram in Action

92

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.2.1: doIt

Sequence Diagram in Action

93

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

Sequence Diagram in Action

94

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Sequence Diagram in Action

95

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Sequence Diagram in Action

96

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Sequence Diagram in Action

97

anObject:
ExampleClass

1: startIt

1.1: doOther (this, that)

1.2: doSomething (x, y)

anotherObject:
OtherClass

anyObject:
AnyClass

Pat User

1.3: doThat (this, that)

1.2.1: doIt

1.2.2: justDoIt

Object Modeling with UML Slides Two:

You Need to be able to Explain:
Sequence Diagram
Message
Message flow
Sequence Expression
Iteration Expression
Parameters
Constraint
Self-Delegation
Conditional Message
Concurrency
Instance Deletion

98

Object Modeling with UML Slides Two:

2.4 Activity Diagramming in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

99

2 new in UML2

Object Modeling with UML Slides Two:

Activity Diagram
Activity Diagrams are “OO Flowcharts”
Activities are nodes connected by edges.

nodes - points where activity or decision occurs
Action - discrete units of work atomic within the activity

all node activity is completed before control passes through them
if a node has multiple input edges ALL precedent actions must complete first
action types

call action - invokes an activity, behavior or operation
send signal - sends an asynchronous signal to a “receiving” action node
accept event action - waits for events detected by its owning object of containing activity

Control - control the flow of control through an activity
Object - objects used in an activity

edges - paths of flow through the diagram
control flow - represent the flow of control through an activity
object flow - represent the flow of objects through an activity

100

Send Letter
precondition: letter topic known

postcondition: letter sent to address

Write letter

Address letter

<<localPrecondition>>

address is known

<<localPostcondition>>

valid address affixed

Mail letter

Activity Diagram Example

101

adapted from: Arlow & Neustadt p.287

initial node

action node

control flow

final node

activity

activity name

activity entry pre-
and post- conditions

action node pre- and
post- conditions

Path Control

102

adapted from: Arlow & Neustadt p.287

Send Letter
precondition: letter topic known

postcondition: letter sent to address

Write letter

Address letter

<<localPrecondition>>

Is address known?

Mail letter

[address is known]

else

merge node

guard condition

keyword

optional
decision
criteria

Concurrency Control

103

adapted from: Arlow & Neustadt p.300

Car Production

Design Car

Manufacture Car

Sell Car

join

fork

Market Car

Concurrency Control

104

adapted from: Arlow & Neustadt p.300

Car Production

Design Car

Manufacture Car

Sell Car

join

fork

concurrent
activities

Market Car

Multiple paths of
activity begin and
proceed (by default)
unaware of each
other!

All incoming paths
must reach the join
before the outgoing
path begins!

Activity Partitions

105

dimension
name

Car Production

Design Car

Manufacture Car

Sell Car

Market Car

CEO R & D Marketing Manufacturing Dealerships
Corporate Partners

Responsible Business

swim
lanes

Time Events

106

Car Production

CEO R & D Marketing Manufacturing Dealerships
Corporate Partners

Responsible Business

Design Car

Manufacture Car

Sell Car

Market Car

Announce Model
Release Date

Model Release
Date

<<time expression>>

Starting Date of Bonus Evaluation

time event

Object Flow

107

Object
flow

CarSpecification

Object

Design Car

Manufacture Car

Sell Car

Market Car

<<time expression>>

Starting Date of Bonus Evaluation

Announce Model
Release Date

Model Release
Date

Car Production

CEO R & D Marketing Manufacturing Dealerships
Corporate Partners

Responsible Business

Object Modeling with UML Slides Two:

You Need to be able to Explain:

Activity Diagram
nodes, edges, partitions

Action Node
pre-, post- conditions, call action (activity, behavior, operation), send
signal, accept event

Control Node
decision criteria, guard conditions, merge node, time event

Control Flow
sequential, synchronous, asynchronous

Object Flow
object node

108

Object Modeling with UML Slides Two:

2.5 Other Diagrams in UML 2
UML is a collection of diagramming disciplines that define the
static and dynamic characteristics of a problem or system

Structure diagrams (static in UML 1)
Class - business objects and their structures
Composite Structure 2
Component
Deployment
Object
Package

Dynamic diagrams
Activity
Interaction

Sequence - system actions that complete a task
Communication (collaboration in UML 1)
Interaction Overview 2
Timing 2

Use Case - user / system interactions / interfaces
State Machine

109

2 new in UML2

Object Modeling with UML Slides Two:

Composite Structure Diagram

110

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and
wiring through dependencies on a structure diagram.

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

A composite structure diagram depicts the internal structure of a
classifier, as well as the use of a collaboration in a collaboration use.

148 UML Superstructure Specification, v2.0

Artifacts that implement components can be connected to them by physical containment or by an «implement»

relationship, which is an instance of the meta association between Component and Artifact.

Examples

Figure 8.13 - Example of an overview diagram showing components and their general dependencies

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and wir-

ing through dependencies on a structure diagram.

Order

«component»

Account
«component»

Product

«component»

Order

«component»

LineItem

OrderHeader

«focus»

*

1

concerns

Account

«component»

Product

«component»

OrderableItem

/orderedItem

account

1

AccountPayable

http://www.omg.org
http://www.omg.org

Object Modeling with UML Slides Two:

Component Diagram

111

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other
components as parts of its internal assembly.

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

UML Superstructure Specification, v2.0 147

Figure 8.11 - An alternative nested representation of a complex component

If more detail is required of the role or instance level containment of a component, then an internal structure consisting of

parts and connectors can be defined for that component. This allows, for example, explicit part names or connector names

to be shown in situations where the same Classifier (Association) is the type of more than one Part (Connector). That is,

the Classifier is instantiated more than once inside the component, playing different roles in its realization. Optionally,

specific instances (InstanceSpecifications) can also be referred to as in this notation.

Interfaces that are exposed by a Component and notated on a diagram, either directly or though a port definition, may be

inherited from a supertype component. These interfaces are indicated on the diagram by preceding the name of the

interface by a forward slash. An example of this can be found in Figure 8.14, where “/orderedItem” is an interface that is

implemented by a supertype of the Product component.

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other components as

parts of its internal assembly.

«component»

Order

OrderHeader

LineItem

Person

OrderEntry

*

order

item

1

«component»

Store

«component»

:Order

«component»

:Product

«component»

:Customer

Person

Person

OrderableItem

OrderableItem

OrderEntry

OrderEntry

Account

Account

«delegate»

«delegate»

A component is shown as a Classifier rectangle with the keyword «component».
Optionally, in the right hand corner a component icon can be displayed. This is a
classifier rectangle with two smaller rectangles protruding from its left hand side.

http://www.omg.org
http://www.omg.org

Object Modeling with UML Slides Two:

Deployment Diagram

112

01/25/2007 04:11 PMPractical UML™: A Hands-On Introduction for Developers

Page 7 of 8http://dn.codegear.com/article/31863

The physical hardware is made up of nodes. Each component belongs on a node. Components are shown as rectangles with two tabs at the upper left.

UML Tools

Creating and modifying UML diagrams can be labor and time intensive. But in constructing the diagrams for this short course, we cut our efforts far short using
Borland Together ControlCenter, which is the premier UML modeling tool.

Borland Together ControlCenter is available from Borland® Software Corporation at www.borland.com.

Borland ControlCenter always keeps diagrams and code in sync. But it's much more than a mere modeling tool. Borland ControlCenter accelerates development
for teams using Java and leading application servers to build e-business and enterprise applications. Borland ControlCenter also supports teams using C++ and

IDL, delivering wider coverage and support for large development organizations. Borland's "platform and building blocksTM" architecture delivers deep integration
across all aspects of software development: model-pattern-edit-test-compile-debug-version-doc-metric-audit-provision-assemble-deploy-run, leading to an
environment in which business experts, modelers, and developers find they can work more productively, increasing the competitive value of what they build and
reducing time to market.

For the latest up-to-date techniques in the Unified Modeling Language and Agile Software Development Processes, subscribe to The Coad Letter. Visit The
Borland Developer Network for all of the latest information on how to deliver better software faster.

Copyright © 2003 Borland Software Corporation, Inc. All rights reserved. All Borland and Borland brands and product names are trademarks or registered
trademarks of Borland. You may not use any of the Borland trademarks without Borland's prior written permission. All other brand and product names may be
trademarks or registered trademarks of their respective holders.

Last Revised: Fri, Dec 1, 2003

 Latest Comments View All Add New RSS ATOM
Move mouse over comment to see the full text

Reply Posted by Marcel corcinschi on Nov 23 2006

Practical UML™: A Hands-On Introduction for Developers

Component diagram is very poor :(

Reply Posted by Volha Melnik on Nov 17 2006

Practical UML™: A Hands-On Introduction for Developers

great tutorial. very easy to understand and remember. thanks a lot for providing it!

Reply Posted by Armando Ruiz on Aug 09 2006

Practical UML™: A Hands-On Introduction for Developers

very good paper I hope to see more of this tutorials more often

Reply Posted by tran quoc on Jul 17 2006

re: Practical UML™: A Hands-On Introduction for Developers

a

Reply Posted by Alex Domnitser on Apr 13 2006

Practical UML™: A Hands-On Introduction for Developers

Very good tutorial. I think in on-line banking login state diagram captions for Get SSN and Get PIN states are at incorrect transition links

The physical hardware is made up of nodes. Each component belongs on a
node. Components are shown as rectangles with two tabs at the upper left.

“Practical UML™: A Hands-On Introduction for Developers,” http://dn.codegear.com/article/31863

Object Modeling with UML Slides Two:

Object Diagram

113

“Practical UML™: A Hands-On Introduction for Developers,” http://dn.codegear.com/article/31863

01/25/2007 04:11 PMPractical UML™: A Hands-On Introduction for Developers

Page 4 of 8http://dn.codegear.com/article/31863

Each rectangle in the object diagram corresponds to a single instance. Instance names are underlined in UML diagrams. Class or instance names may be omitted
from object diagrams as long as the diagram meaning is still clear.

Sequence diagrams

Class and object diagrams are static model views. Interaction diagrams are dynamic. They describe how objects collaborate.

A sequence diagram is an interaction diagram that details how operations are carried out -- what messages are sent and when. Sequence diagrams are
organized according to time. The time progresses as you go down the page. The objects involved in the operation are listed from left to right according to when
they take part in the message sequence.

Below is a sequence diagram for making a hotel reservation. The object initiating the sequence of messages is a Reservation window.

The Reservation window sends a makeReservation() message to a HotelChain. The HotelChain then sends a makeReservation()
message to a Hotel. If the Hotel has available rooms, then it makes a Reservation and a Confirmation.

Each vertical dotted line is a lifeline, representing the time that an object exists. Each arrow is a message call. An arrow goes from the sender to the top of the
activation bar of the message on the receiver's lifeline. The activation bar represents the duration of execution of the message.

In our diagram, the Hotel issues a self call to determine if a room is available. If so, then the Hotel creates a Reservation and a Confirmation. The asterisk on
the self call means iteration (to make sure there is available room for each day of the stay in the hotel). The expression in square brackets, [], is a condition.

The diagram has a clarifying note, which is text inside a dog-eared rectangle. Notes can be put into any kind of UML diagram.

Collaboration diagrams

Each rectangle in the object diagram corresponds to a single instance. Instance names
are underlined in UML diagrams. Class or instance names may be omitted from object
diagrams as long as the diagram meaning is still clear.

Object Modeling with UML Slides Two:

Package Diagram

114

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

01/26/2007 03:11 PMSparx Systems - UML 2 Tutorial - Package Diagram

Page 1 of 2http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Search...

Sparx Systems EA User Guide

Navigate

Resources

MDG Technologies

Whitepaper Repository

Demonstrations

UML Database modeling

Mapping Use Cases

RTF Documentation

Image Library

MDA Resources

XML Schema Generation

Extra UML Resources

Corporate Resources

Adaptive Server

MySQL

Oracle

PostgreSQL

SQL Server

OpenEdge

Developers

Automation Interface

UML Patterns

UML Profiles

MDA Style Transforms

Built-in Transformations

Writing Transformations

UML Tutorials

UML Tutorial

UML Tutorial - Part 2

UML 2.0 Tutorial

EA Demonstrations

UML Models

Business Process Model

Custom Model

Dynamic Model

Logical Model

Physical Models

Use Case Model

EA Tutorials

Resource Management

Testing Support

Traceability

Use Case Metrics

Home > Resources > UML 2 Tutorial > Package Diagram

UML 2 Package Diagram

Package Diagrams

Package Diagrams are used to reflect the organization of packages and their elements. When used to represent class elements,

Package Diagrams are used to provide a visualization of the namespaces. The most common use for Package Diagrams is to

organize Use-Case Diagrams and Class Diagrams, although the use of Package Diagrams is not limited to these UML elements.

The following is an example of a package diagram.

Elements contained in a Package share the same namespace, this sharing of namespace requires the elements contained in a specific

namespace to have unique names.

Packages can be built to represent either physical or logical relationships. When choosing to include classes to specific packages, it is

useful to assign the classes with the same inheritance hierarchy to packages, classes that are related via composition and classes

that collaborate with also have a strong argument for being included into the same package.

Packages are represented in UML 2.0 as folders and contain the elements that share a namespace; all elements within a package

must have a unique identifier. The Package must show the Package name and can optionally show the elements within the Package

in extra compartments.

Package Merge

When a «merge» connector is used on a package, the source of the merge imports the target’s nested and imported contents. If an

element exists within the source and in the target, the source's element's definitions will be expanded to include the element

definitions contained in the target. All of the elements added or updated by a merge are noted by a generalization relationship from

the source to the target.

Package Import

The «import» connector indicates that the elements within the target package, which in this example is a single class, the target

package, will be imported into the source package. The Source Package’s namespace will gain access to the Target’s class/s; the

Products Resources Solutions Forum Support Partners Registered Users Enterprise Architect UML Tutorial MDG Link

About Us

Package Diagrams are used to reflect the organization of packages and their elements. When used
to represent class elements, Package Diagrams are used to provide a visualization of the
namespaces. The most common use for Package Diagrams is to organize Use-Case Diagrams and
Class Diagrams, although the use of Package Diagrams is not limited to these UML elements.

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Object Modeling with UML Slides Two:

Communication Diagram

115

01/26/2007 03:13 PMSparx Systems - UML 2 Tutorial - Communication Diagram

Page 1 of 1http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_communicationdiagram.html

Search...

Sparx Systems EA User Guide

Enterprise Architect 6.5 Resources Partners Support Registered Users Legal Privacy Site map © 2000-2007 Sparx Systems Pty Ltd. All rights Reserved.

Navigate

Resources

MDG Technologies

Whitepaper Repository

Demonstrations

UML Database modeling

Mapping Use Cases

RTF Documentation

Image Library

MDA Resources

XML Schema Generation

Extra UML Resources

Corporate Resources

Adaptive Server

MySQL

Oracle

PostgreSQL

SQL Server

OpenEdge

Developers

Automation Interface

UML Patterns

UML Profiles

MDA Style Transforms

Built-in Transformations

Writing Transformations

UML Tutorials

UML Tutorial

UML Tutorial - Part 2

UML 2.0 Tutorial

EA Demonstrations

UML Models

Business Process Model

Custom Model

Dynamic Model

Logical Model

Physical Models

Use Case Model

EA Tutorials

Resource Management

Testing Support

Traceability

Use Case Metrics

Home > Resources > UML 2 Tutorial > Communication Diagram

UML 2 Communication Diagram

Communication Diagrams

A communication diagram, formerly called a collaboration diagram, is an interaction diagram that shows similar information to

sequence diagrams but its primary focus in on object relationships.

On communication diagrams, objects are shown with association connectors between them. Messages are added to the associations

and show as short arrows pointing in the direction of the message flow. The sequence of messages is shown through a numbering

scheme.

The following two diagrams show a communication diagram and the sequence diagram that shows the same information. Although it

is possible to derive the sequencing of messages in the communication diagram from the numbering scheme, it isn’t immediately

visible. What the communication diagram does show quite clearly though is the full set of messages passed between adjacent

objects.

Products Resources Solutions Forum Support Partners Registered Users Enterprise Architect UML Tutorial MDG Link

About Us

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

A communication diagram, formerly called a collaboration diagram, is an interaction diagram that shows
similar information to sequence diagrams but its primary focus in on object relationships. On
communication diagrams, objects are shown with association connectors between them. Messages are
added to the associations and show as short arrows pointing in the direction of the message flow. The
sequence of messages is shown through a numbering scheme.

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Object Modeling with UML Slides Two:

Interactive Overview Diagram

116

01/26/2007 03:13 PMSparx Systems - UML 2 Tutorial - Interaction Overview Diagram

Page 2 of 2http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_interactionoverviewdiagram.html

Enterprise Architect 6.5 Resources Partners Support Registered Users Legal Privacy Site map © 2000-2007 Sparx Systems Pty Ltd. All rights Reserved.

Testing Support

Traceability

Use Case Metrics

An Interaction Overview Diagram is a
form of activity diagram in which the
nodes represent interaction diagrams.
Interaction diagrams can include
sequence, communication, interaction
overview and timing diagrams. Most of
the notation for interaction overview
diagrams is the same as for activity
diagrams, for example initial, final,
decision, merge, fork and join nodes are
all the same. However, interaction
overview diagrams introduce two new
elements, interaction occurrences and
interaction elements.

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Object Modeling with UML Slides Two:

Timing Diagram

117

01/26/2007 03:13 PMSparx Systems - UML 2 Tutorial - Timing Diagram

Page 2 of 2http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_timingdiagram.html

Enterprise Architect 6.5 Resources Partners Support Registered Users Legal Privacy Site map © 2000-2007 Sparx Systems Pty Ltd. All rights Reserved.

UML timing diagrams are used to display the change in state or value of
one or more elements over time. It can also show the interaction between
timed events and the time and duration constraints that govern them.

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Object Modeling with UML Slides Two:

State Machine Diagram

118

Figure 15.48 - SubmachineState with usage of exit point

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

UML Superstructure Specification, v2.0 567

Figure 15.48 - SubmachineState with usage of exit point

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :

ReadAmountSM
abortedaborted

ATM

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :

ReadAmountSM
abortedaborted

ReadAmount :

ReadAmountSM
abortedaborted

ATM

A state machine diagram is a graph that represents a state machine. States are rendered by
appropriate state symbols, while transitions are generally rendered by directed arcs that connect
them or by control icons representing the actions of the behavior on the transition.

http://www.omg.org
http://www.omg.org

Object Modeling with UML Slides Two:

UML 2 Syntax Wrap-Up . . .

This slide set is a good INTRODUCTION and OVERVIEW of the
syntax and semantics of UML 2 diagrams

To truly understand and master the UML 2 syntax requires
extensive practice in using the language to document and
analyze REAL projects with REAL teams

Like any other LANGUAGE UML 2 is quickly and easily
forgotten without some reinforcing practice

119

