3@_

Objeot Modeling with UML

Fundamentals
Les Waguespack, Ph.D.

a Slides Two

Object Modeling with UML Slides Two: 1

Copyright and References

The arrangewment, presentation, original illustrations and organization of the materials are
copyrighted by Leslie J. Waguespack, Ph.0. with all rights reserved (€2007). Derivations and
excerpts in these materials are referenced as follows:

%k UML 2 and the Unified Process 2nd Ed - Practical Object-Oriented Analysis and Design, Arlow & Neustadt,
Addison-Wesley / Pearson Education, Inc., Boston, MA, ISBN 0-321-32127-8

UML 2 Toolkit, Eriksson, Penker, Lyons & Fado, Wiley, Indianapolis, IN, ISBN 0-471-46361-2

UML 2.0 - Superstructure, Object Management Group, http://www.omg.org/cgi-bin/doc?formal/05-07-04
Object Oriented Analysis, 2nd Ed, Peter Coad and Edward Yourdan, Prentice-Hall, 1991.ISBN 978-0136299813
Business Modeling With UML, Eriksson & Penker, Wiley, Indianapolis, IN, ISBN 0-471-29551-5

¥ O% * ¥ *

Enterprise Modeling With UML Designing Successful Software Through Business Analysis, Addison-Wesley,
Reading, MA, ISBN 0-201-43313-3

% Use Case Modeling, Bittner & Spence, Addison-Wesley / Pearson Education, Inc., Boston, MA, ISBN
0-201-70913-9

% Writing Effective Use Cases, Cockburn, Addison-Wesley, Boston, MA, ISBN 0-201-70225-8

%k Object Oriented Systems Engineering, Waguespack, course notes CS390, CS460, CS630, CS771, Computer
Information Systems Department, Bentley College, Waltham, MA.

Object Modeling with UML Slides Two: 2

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04

Outline

* 1. Overview

* 2. Diagramwming in UML 2

2.1 Class

2.2 Use Case

2.3 Sequence

24 Activity

2.5 Thumbnails of all the others

X O® X O »

Object Modeling with UML Slides Two: 3

1. Overview

Object-Oriented Modeling is based on a systewm of
concepts that define the existence and relationships of
facts within a defined system boundary.

The systewm of concepts is called the Object-Oriented
Paradigm.

00M is independent of UML or any other 00 language:
C++ Java, Swmalltalk, C ...

The Object-Oriented Paradigm is stable, well understood
and docuwmented.

UML is an evolving, growing tool attempting to address
a growing and evolving industry of system
development.

Object Modeling with UML Slides Two: 4

RieEpsl/ wwiv. omc . org/umlsicerta tilca thilon/lexXam Hin EotIaiEn

OMG Certified UML Professional

The Exams

There are three OCUP Exams - Fundamental, Intermediate and Advanced. Each Exam tests your
knowledge of a different subset of the UML. Certification indicates the following abilities and qualifications.

Follow the links below for detailed information on each Exam.

Fundamental You can work with the most commonly encountered UML elements
You can create simple UML models
You are qualified to be a member of a UML Development Team.

Intermediate You can work with a broad range of UML elements
You can create complex UML models
You are qualified to be a senior member of a UML Development Team.

Advanced You can work with the full range of UML elements
You can create extremely large, complex UML models
You are qualified to manage a UML Development Team.

Object Modeling with UML Slides Two: 9

http://www.omg.org/uml-certification/exam_info.htm
http://www.omg.org/uml-certification/exam_info.htm

COVERAGE MAP FOR THE OMG-CERTIFIED UML

PROFESSIONAL FUNDAMENTAL ExXAM

Topic Area Allocation

Topic Area -->

Percent of
test this
Topic Area topic
should
represent
1.0 Class Diagrams (Basic) 30%
2.0 Activity Diagrams (Basic) 20%
3.0 Interaction Diagrams (Basic) 20%
4.0 Use Case Diagrams (Basic) 20%
5.0 Miscellaneous basic notions 10%
Total 100%

Object Modeling with UML Slides Two: 6

UML Piagrams

* UML is a collection of diagramwing disciplines that define the static and

dynawmic characteristics of a problem or system
* Structure diagrams
* (Class - business objects and their struetures
Composite Structure - nested contents of structured classifiers
Component - modules and replaceable parts of system
Deployment - maps software architecture to physical system architecture
Object - depicts the state of objects at a point in time
* Package - a collection of classes forming a cohesive subsystem of concepts
* Pynawic diagrams
* Activity - object oriented “flowcharts”
* |nteraction - diagrams that depict the ‘active” relationship between objects
* Sequence - time-ordered inter-object messages that complete a task
* Comwunication - message traffic among classes in a class structure
* Interaction Qverview - show high level flow of control between interactions
* Timing - real-time dependent object relationships
* \Use Case - user / system interactions / interfaces
* State Machine - depicts stable points in process flow yielding predictable conditions

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 7

2, Piagramming in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrawms (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 8

Elements of UML 2

* Specifications
* graphical - diagrams and icons to support visualization
* tfextual - descriptions of the semantics of elements

* Adornments
* additions to basic modeling elements that highlight important details

* Common Divisions
* classifier and instance - categorization / realization of model elements
* interface and implementation - separating the “how” from the ‘what”

* Extensibility mechanisms
* constraints - allow adding new rules to modeling elements
* stereotypes - allow adding new wodeling elements beyond UML 2
* tagged values - allow adding new properties to model elements
* UML profiles - allow grouping the above as a “modeling template”

Object Modeling with UML Slides Two: 9

“Ease of Use” vS. “Ease of Use”

* UML 1.x was developed primarily to support modeling in the
analysis and design phases of software system development

* UML 2.0 is a refinement of UML consistent with OMG's
Model Driven Architecture philosophy that allows UML
models to be input, transformed, and reconfigured
avtomatically by wmodel compilers.

* UML 2.0 achieves this extended functionality by adding
significant rigor, detail and complexity to the syntax and
semantics of the modeling language.

* UMLisa TOOL and as such every artisan, technician, and
builder will need to assess the breadth and width of UML 2.0
that is appropriate to the task and normalize that “subset”
among all the collaborators.

Object Modeling with UML Slides Two: 10

2.1 Class Piagramming in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrams (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 11

% B

business
visionary

business
reengineer

business
process
reengineer

systems
professional

system
specz'ﬁcatz'on

The Abstraction
Focus in this Course

Traditional
business ~ Computer Information
process Sy stem
er
F ‘ Development Path
: .
ra systems
nde analyst
ojrwdare . / % software
0de _ de’U€IOP€7"
DY OT¢€ ONd ()) %, 0}
0PEerdLio 0PEerdLiI0
the
Business

Object Modeling with UML Slides Two:

Model - 6o - ‘Round

Class Diagram

Use Case Class Diagram

Sequence

Piagram Sequence

Diagram

* Modeling is an iterative process
—> % prototype
* refine

* validate
I

Object Modeling with UML Slides Two: 13

Class Diagramming

AX.A.
“Pomain Modeling”

* |n the overall approach, class diagramming achieves these ends:

* |dentifying business objects and determining their sameness and difference

* |dentifying class structures that explain the sameness and difference of objects
* |dentifying association structures that define accessibility

* Petining attributes that describe and identify distinct objects

* Defining services / behaviors that describe the objects actions and
responsibilities in the problem domain

Object Modeling with UML Slides Two: 14

Class Diagramming

* Finding classes and objects

* ldentifying class structures

* ldentifying object structures

* Pefining class and object attributes

* Petining class and object behaviors
(services / methods)

Object Modeling with UML Slides Two: 15

Finding Classes and Objects

* Qbject. Lsomething thrown in the way (Medieval Latin), a
casting before (Latin)] A person or thing to which action,
thought, or feeling is directed. Anything visible or tangible; a
material product or substance.

* a uniquely identifiable, attribute value bearing, “living instance”

* Class. [a division of the Roman people (Latin); a calling,
summons (Greek)] A number of people or things grouped
together because of certain likenesses or comwon fraits.

[Webster's, 19771

* atewmplate, a ‘cookie cutter” that defines the structure (memory and
behavior) of objects derived from it

Object Modeling with UML Slides Two: 16

Nawming Classes and their Objects

* (lass symbol denotes a

defined identical structure
(attributes and services)
that all instances of this
class (objects) will share.
Notice the italic class name!

ClassName

Attributes

Class and Object* symbol
represents both the defined
structure of the class but,
also, represents any and all
instances that may exist in
the problem domain. Notice
that the class name is NOT
italic!

Services

ClassName

Attributes

Services

An abstract description

or template for objects

of this class. No instances
of this class are expected
to be found in the problem
domain.

Also called an
“Abstract Class.”

The abstraction and all

the instances of this

class that ARE expected to
be found in the problem
domain.

Also called a
“Concrete Class.”

*class and object is not a standard term in
UML, but it better explains the element’s

purpose.

Object Modeling with UML Slides Two: 17

“Class and Object” Prawn

* A name vsed in the standard
vocabulary of the problem
dowmain. A sinqular noun, or

adjective and noun. Each

instance is one item not a

group. User client-familiar \
ferws.

* The characteristics of this
class and the specific values
for an instance. These are
defined in the attribute
defining activity.

* These are the process
functions performed by this
object requested by other
objects. They are defined in
the service defining
activity.

ClassName

— > Attributes

Services

Object Modeling with UML Slides Two: 18

Prawing an Object

* An object is an
instance of a class
that possesses the
identical structure
defined in the class,
but retains its own
values for attributes.

* The <namey is

B

ClassName

underlined to denote it ———> Attributes

iS an object.

* An object may be
anonymous (class
nawme only),
indeterminate (object
nawe only), or specific
(object name and
class).

/ Services

Variations of <name>
Anonymous.
:ClassName

Indeterminate:
myQbject

Specific:
myObject: ClassName

As a convention in class names
each and every “‘word” in the name
begins with a capital letter because
there are no “special characters” to
separate them while in an object’s
name the very first letter is lower case.

Objects do not appear in class diagrams!

Object Modeling with UML Slides Two: 19

Where to look for ‘¢lass and objects”

kK

Observe first-hand: follow the client around performing
normal domain activities, "walk a wmile in the client’s shoes'.

Seek out problem domain "experts' and have them deseribe the
problem domain o you, what makes it interesting, what is
most important (and why), what scenarios are most
significant (and why)?

Refer to previous specifications (hopefully 00), reuse Objects
when relevant to this systewm.

Seek out other systems with similar behavior or
responsibilities.

Read and re-Read the requesting document, identify the
MISSION and the PURPOSE of the systewm.

Prototype the object list and review it with the user and
domain experts, refine, refine, refine!

Object Modeling with UML Slides Two: 20

* What to look for ...

kK

Structures: finding structures has its own activity in 00A,
Generalization-Specialization and Whole-Part are very fruitful.

Other Systems: are there "external-terminators’ with which inferaction
is initiated or responded to, other persons, organizations, or systems?

Devices: what devices will the system interact with? not computer
implementation specific devices like terminals and disk drives but,
controls, sensors, monitors in a functional context.

Things or events remewmbered: collect a list of all things or events that are
"‘remembered"” in the domain, identified by numbers or referred fo in
documents.

Roles played: what roles do humans play in relationship to the systewm,
does one individval play more than one role?

Operational procedures: are there mechanical or clerical procedures that
must be followed?

Sites: are particular locations or contexts important to events?

21

What to challenge. ..

* |norder to pare down the list of potential objects apply the
following tests:

* Needed Remembrance

* Arerecords of this object really used, is the record input to some defined
function?

* Needed Behavior

* |f the object is remembered it will at least have to service "create, connect,
access, and release” messages, what else?

* (Usvally) Multiple Aftributes

* (Objects are important because they are the "hubs’ of function, one attribute
objects should seewm suspicious!

* (Usually) More Than One Object in a Class

* (Objects with "proper" names (this object or her object) are probably instances
but not classes in themselves!

Object Modeling with UML Slides Two: 22

What (else) to challenge. . .

* |norder to pare down the list of potential objects apply the
* Always-Applicable Attributes

* Do all instances of this class have a set of identical attributes? Differing sets
of attributes indicate Gen-Spee. Structure!

Always-Applicable Services

* Do all instances of this class have a set of identical services? Differing sets of
services indicate Gen-Spec. Structure!

Pomain-based Requirements

* Requirements that will exist regardless of the design or implementation
choices, (i.e. capacity, speed, precision, metrics. (Keep a file of design notes to
assure these are heeded.))

Not Merely Derived Results

Avoid merely derived results, ("client’s age" in a system that stores date of
birth). Temporary files or results are design issues.

Object Modeling with UML Slides Two: 23

ldentifying Class Structures
“Inheritance”

* Structure: A manner of organization. [Webster's 19771

* Structureis an expression of problem-domain complexity,
pertinent fo the system responsibilities.

* The term "structure’ is used as an overall term, describing both
Generalization-Specialization (Gen-Spec) Structure between classes and
Whole-Part Structure between objects (instances of classes).

* Gen-Spec is a relationship between classes and therefore
Inheritance only occurs between classes (not objects*) !t

*objects derive their characteristics from the class to which
they belong, but the attributes and behavior are expressed
as a result of instantiation rather than inheritance!
Object Modeling with UML Slides Two: 24

Prawing Generalization /
Specialization

Classes define the structure
of the objects that will be
instantiated from them,
they are templates

The sameness / difference
that may exist between
classes is drawn to explicitly
define how two classes are
the same and are different.

Their sameness is defined by
the structure of the
deneralization.

Their difference is explicit in
the distinctive structure of
the specialization.

Generalization

Attributes

Services

/\

Also called:

Parent Class,
Super Class, or
Super-ordinate
Class.

Specialization

Specialization

additional attributes

additional attributes

additional services or
distinct behavior

additional services or
distinct behavior

Also called:

Child Class,
SubClass, or
Sub-ordinate
Class.

Object Modeling with UML Slides Two: 25

Gen-Spec & Inheritance

* Gen-Spec is a structural relationship between CLASSES

* Gen-Spec defines the sameness of the child class with the
parent class

* everything the parent class can remember (attributes), so can the child
* ot the values of attributes - only the structure (values are in objects!)

* every NAMED behavior of the parent class is available from the child
* Gen-Spec defines how the child is explicitly different

* the child may have additional attributes not found in the parent class
* the child may have additional behaviors (services) not in the parent

* the child may implement a behavior NAMED in the parent differently
* same Service Name (same name and same parameters)
* different WAY of implementing the behavior
* also known as OVERRIPING or OVERLOAPING a parent’s service

y) (] H I
We re fﬂlkl"g Class here not ObJQCf ' Object Modeling with UML Slides Two: 26

Gen-Spec Structure

Teacher

idNumber
name
address
phone
officeNumber
department

teachClass
administerExam
payParkingFine

Student

idNumber
name
address
phone
major
minor
classCode

payTuition
attendClass
payParkingFine

Person
idNumber
name
address
phone
payParkingFine
Student Teacher
major officeNumber
minor department
classCode
= teachClass
payTuition administerExam
attendClass

Object Modeling with UML Slides Two: 27

Gen-Spec Strategies

* (Consider each class as a generalization. For its potential
specializations ask:

* |s it in the problem domain?
* |s it within the system ‘s responsibilities?
* Will there be inheritance?

* Will the specialization meet the "What to consider and challenge' criteria
for Class and Objects?

* (Consider each class as a specialization. For its potential
generalizations ask the same questions!

Object Modeling with UML Slides Two: 28

Hierarchy vs.
Lattice

* The most common forwm of
gen-spec is hierarchy.
* Lattice may be used to:
* highlight additional
specs
* explicitly capture
commonality

* wmodestly increase
model complexity

Person Notice the
abstract class?
idNumber
name
address
phone
payParkingFine
Student StaffMember
major officeNumber
minor department
classCode
. teachClass
payT(ljlglon administerExam
attenaClass
4 /\
StudentTeacher OJTStudent
supervisor assignedParking

Object Modeling with UML Slides Two: 29

Avoid Multiple
Inheritance!

Waguespackism!

Multiple inheritance
makes further model
evolution difficult

Most apparent need for
multiple inheritance is
better handled using “role
models” which are
separate objects carrying
the shared functionality

Most programwing
languages handle multiple
inheritance very
awkwardly

Avoid it at all costs !

Person

name

phone

idNumber

address

payParkingFine

Student StaffMember

major officeNumber
minor department
classCode

. teachClass
pﬁynglon administerExam
atiendulass

4 /\
StudentTeacher OJTStudent

supervisor

assignedParking

Object Modeling with UML Slides Two: 30

Inheritance and Polymorphism

* “the child may implement a behavior NAMED in the parent
differently”

* sawme Service Nawme (same name and same parameters)

* different WAY of implementing the behavior
* also known as OVERRIPING or OVERLOADING a parent’s service

* Nawing a service in a parent class sets a precedent

* if the implementation is omitted we call this an “abstract service”

* every child-class must (somehow) implement that NAMED behavior
* each child-class may use a different implementation

* the abstract service” (method) leads to POLYMORPHISM

* the same named service implemented differently in different classes

* clients of this service use it in the abstract ignoring any difference in
implementation

We're still talking class here not object ! Object Modeling with UML Slides Two: 31

Person

Student

Ja\

Undergrad

Graduate

Alumni

Employee

i

Staff

Faculty

Inheritance

Person

Student

Undergrad

Graduate

Alumni

Employee

A\

Staff

Faculty

Object Modeling with UML Slides Two: 33

Polymorphism

sally:Student

calculateTuition
degreeAudit

Object Modeling with UML Slides Two: 34

ldentifying Object Structures

* Associations are relationships between 0BJECTS

* Associations define the awareness that one object has for
another

* Associations are defined by the strength of a relationship
* Composition - the parts’ existence depends on the whole
* delete the whole and you must delete all the parts
* Aggregation - the whole manages a collection of parts
* the parts exist on their own without need for the whole
* lnstance Connection* (simple association) - one object knows the other
* one object knows another exists and can send it messages

* Every association requires a defined cardinality

* one to one!, one to many!, and many to many 7

*Instance Connection is another very
useful term but not formally part of UML.

Now we'e talking about objects! Object Modeling with UML Slides Two: 35

Prawing Associations

* Association is a basic method of organization in human
thinking. It is helpful in identifying objects at the edge of the
problem domain, and at the edges of system responsibilities. It
can group together Class and Objects based upon whole-part
meaning.

* The notations are directional, so that the Structure could be
drawn at any angle; however, consistently placing the whole
higher and the parts lower produces an easier to understand
model. Note that not only may there be several parts but,
they may be of different kinds as well!

* Note that if a parent class is a whole, a part, or has an
instance connection then any of its child classes are equally
capable.

Object Modeling with UML Slides Two: 36

Prawing Associations

Composition

Aggregation

“lnstance GConnection”

Degree

CourseSection

ScheduleBooklet

name
office
phoneNumber
abbreviation

sectionNumber
building
classroom

time

year
term

degreeAudit

enroll

1

1, m

> os

0, 35

addCourse
deleteCourse

RequiredCourse

Student

Student

idNumber
name
address
phone

idNumber
name
address
phone

idNumber
name
address
phone

checkPrerequisite

payParkingFine

payParkingFine

0.1

0,m

Object Modeling with UML Slides Two: 37

Whole-Part Examples

Aircraft

O,1<>

0,4

Engine

An aircraft has O (glider) to 4
engines. An engine belongs to
zero or one aircraft (an engine
cannot be shared!).

Department

1, m

Professor

A department has 1 or more
professors (must have one)
and each professor belongs to

a department!

Object Modeling with UML Slides Two: 38

Associations and Cardinality

* (ardinality in associations is a critical aspect of defining the
business rules

* (ardinality is critically important when defining how
information will be stored and later retrieved as in a
database

* “Onetoone” and “One to Many” relationships reflect a clear
and complete understanding of the business rules

* “Many to Many” relationships will eventually need further
explanation

* |n general, any “many to many” relationship will need to be
converted to one or more one to many” relationships before a
model can actually be implemented in programming!

Object Modeling with UML Slides Two: 39

Instance Connection Example

LegalEvent

read

Clerk

modify

Perhaps should be ...

AccessEvent

LegalEvent

dateTime
accessType

Clerk

Object Modeling with UML Slides Two: 40

Example continved . ..

LegalEvent

AccessEvent

dateTime
accessType

Clerk

Perhaps should be ...

LegalEvent

1, m

AccessEvent

dateTime
accessType

O,m

Clerk

Object Modeling with UML Slides Two: 41

Whole-Part Strategies

* |nvestigating whole-part may point out the need for a Class
and Object, perhaps one not even mentioned in the "requesting
document” from the client.

* What to Look for:

* Assembly-Parts
* (e.q. aircraft/engines; bicycle/Lhandle bars, wheels, pedals], building/rooms)
* (ontainer-Contents

* (e.q. aircraft/Lpilot, cargo item, fuel, passenger]; safety kit/Lflare, bandage,
medicinel

* (ollection-Members (an varieties)

* (e.g. class/Lteacher, studentl; bus route/bus stop; project plan/phase)
{additional constraint: ordered collection}

Now we're talking about composition and aggregation of objects! Object Modeling with UML Slides Two: 42

What to consider / challenge...

* (Consider each Object in the class as a whole. For its potential
part(s), ask:

k

k

k

k

k

Is it in the problem domain?

Is it within the systewm'’s responsibilities?
Does it capture more than just status value?
If not, thewn just add an attribute!

Does it provide a useful abstraction in dealing with the problem domain?

* (Consider each Object in the class as a part. For its potential
whole, ask the same questions!

Object Modeling with UML Slides Two: 43

Defining Attributes

Attribute: any property,
quality, or characteristic
that can be ascribed to a

person or thing. [Webster's
19771

An attribute is some data
(state information) for
which each Object in a Class
has its own value.

Attributes describe values
(state) kept within an
Object, to be exclusively
manipulated by the Services
of that Object.

The Attributes and Services
are treated as an infrinsic
whole.

ClassName

Attributes

Services

ClassName

Attributes

Services

Object Modeling with UML Slides Two: 44

ldentifying Attributes

* What is the Object in a Class responsible for knowing?

* For each Object ask:

* How am | described in general?

* How awm | described in this problem domain?

* How awm | described in the context of this system 's responsibilities?
* What do | need to know?

* What state information do | need to remember over time?

* What states can | be in?

Object Modeling with UML Slides Two: 4%

More about Attributes

* What characteristics should attributes themselves have?

* Aftributes capture "atomic concepts.”

* The motivation for expressing an "atomic concept” is to produce a simpler
model for human review with fewer attribute names, and natural data
groupings for easier assimilation.

* Peter to design - Normalization

* Defer compromises between introducing new tables to eliminate data
redundancy (normalization) and achieving acceptable performance.

* [efer to design - ldentification mechanisms

* Pefer coding schemes and artificial key design. Capture mandatory coding
schewe if present.

* Defer to design - Holding a re-calculable Attribute over time

* Just specify the recalculation Service and decide later if the value should be
stored.

Object Modeling with UML Slides Two: 46

More Attribute Strategies

* Attributes (with Services) guide the definition of Classes:

k

k

xk

"Not applicable?” then revisit Object's G-en-Spec.
Recheck each Object with only one attfribute.
Check each attribute for repeating valuves.

* lnstance Connections behave much like attributes

k

Do not model foreign keys needed for connections as attributes!

* Treat Instance Connections as 1-1, 1-wm and m-w relations:

k

Check each many to many Instance Connection asking what Attributes
might describe the connection.

* Check each Instance Connection between Objects in the same Class.

* (Check multiple Instance Connections between Objects.

* (Check for additional needed Instance Connections.

Object Modeling with UML Slides Two: 47

¥

Pefining Services

Service*: an activity carried on to provide people with the use
of something. (Webster's 19771

Service: a specific behavior that an Object is responsible for
exhibiting.

Services and Attributes combine to abstract the principle of
“thange over time'.

The fact that Services reside in Objects abstracts the
principle of "similarity of function" and "immediate causation.

Services also provide necessary comwmunication between
Objects.

Every "data processing " system has some PROCESSING.

Define Services:
* identify Object states

: b . : *Service is another term commonly used not formally in UML.
identify required Services UML would call this an ‘operation” sometimes a “wmethod.”

X
* identify Message Connections
* specify the Services

Object Modeling with UML Slides Two: 48

Standard Required Services

* Algorithmically Simple Services:

* (reate an Object:

* This Service checks the values against the constraints; then if AOK, create
the new instance of the Object: then returns a result

* Gonnect an Object:

* This Service connects (disconnects) and Object with another. It establishes or
breaks a mapping between Objects.

* Access an Object:

* This Service gets or sets the value of an Object's Attributels).
* Release an Object:

* This Service releases (disconnects and deletes) an Object.

* Algorithwmically Complex Services:

* (Calculate:

* This Service calcvlates the results from Attributes of the Object. Access to
other Objects may be needed to complete the Service.

* Monitor:

* This Service monitors an external system or device: it may have
asynchronous signaling responsibilities.

Object Modeling with UML Slides Two: 49

Pescribing Services

The description of the Service may take on a variety of
forwms: prose, pseudo-code, flow-diagrams, decision logic, state
transition, programming language syntax (c++, Java, ¢ Swallfalk, etc.).

Except where definite prescribed procedures are known focus
on the "What" rather than on the "How"!

Use a consistent verb tense and mood (present imperative).

"Future" references are not descriptions of Service
responsibility as much as extended specification of
requirements not yet addressed.

State dependent actions should fully express the state
context: "Precondition’ “trigaer’ and "“terminate.

Object Modeling with UML Slides Two: 50

Documentation vs. Diagrams

* The class diagrawm is a very useful modeling tool

* |t can be a white board “mock-up”
* |t can be the back of a bar napkin “pipe dream”
* |t can be the back of an envelope “notion to be completed later”

* A diagram is complete documentation -- NOT!

* Each element of a diagram requires a prose deseription
* class - abstract or concrete
generalization - specialization
attribute - valid values, range constraints
service - prose, pseudo-code, Java, Smalltalk, C#
association - composition (whole-part), aggregation, instance connection
cardinality - required versus optional relationships

* The prose explains how the diagram element accurately reflects the “ real
world “ business rule that being documented

¥ % ¥ * *

Object Modeling with UML Slides Two: 51

Commonly Used Adornments

* (lass symbols are often replaced by
adornments that represent some
aspect of their role in the model

* boundary (interface)
* provides communication with elements
outside the structure being modeled

Boundary Class/Object
* confrol
* describes a class/object that implement
policy applying business rules and
controlling execution
Control Class/Obiject
* entity

* represents a class/object whose
“remembered contents” must persist beyond
a single ‘execution” of this structure

Entity Class/Object
* Stereotypes

* model elements that obey extended
assumptions defined by team or problem <<StereotypeName>>
profile can “follow a stereotype!”

Object Modeling with UML Slides Two: 52

You Need to be able to Explain:

k

* ¥

* ¥

Class
* parent, child, super, sub, super-ordinate, subordinate
* abstract Class
Object
Attribute
* atowicity, re-calculable results
Service
* operation
* wethod
* abstract service
Generalization-Specialization
* class hierarchy
* inheritance
* wultiple inheritance
Polymorphism
Association
* Whole-part
* cowmposition
* aggregation
* instance connection
* cardinality

Object Modeling with UML Slides Two: 53

2.2 Use Case Piagramming in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrams (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 54

Model - 6o - ‘Round

Class Diagram

Use Case Class Diagram

Sequence

Piagram Sequence

Diagram

* Modeling is an iterative process
—> % prototype
* refine

* validate
I

Object Modeling with UML Slides Two: 59

Requirements Engineering

* “Requirements tell us WHAT is happening in the problem space,
but not necessarily HOW it is happening!”

* Functional Requirements

* == what behavior the system should demonstrate

* e.0.accept paywment, issue receipts, record inventory changes
* Non-Functional Requirements

* = a specific property or constraint on the system

* e.g. web-based inferface, email receipts, handle at least 5000 catalog entries
* Requirements Activities
* Eliciting
* [Pocumenting
* Maintaining

Object Modeling with UML Slides Two: 56

Requirements Elicitation

* A complete description of a system is no less complex than the
real system itself

* Qur task is to construct useful MOPDELS of real systems from
which we can build computer systems that support the real
systewm’ s functions

* Qur MODELS must necessarily
* filter out some details that are not computer system relevant
* describe the system behavior as the user experiences it

* try toidentify the rules that define what systewm behavior is possible and
what is not (all, everyone, always, never, nobody, none)

* Qur Models must be recognizable and understandable by the
users whose goals and objectives we are supporting

Object Modeling with UML Slides Two: 57

Use Case Model

* A Use Case Model is a way of capturing requirements.

* ‘A Use Case describes the interaction of some actor with the functional
capabilities of the system”

* Use cases depend on three concepts -

* System Boundary - what behavior is relevant to the modeling

* Actors - who initiates, participates in, and/or receives the result of
system behavior

* A description of system behavior to achieve the desired results . ..
* actions
* their ordering
* Which are required or optional
* what constitutes success
* what constitutes failure

* [Pocumenting a Use Case requires a diagram and specification

Object Modeling with UML Slides Two: 58

Use Case Diagram

* A Use Case diagram is a shorf-hand depiction of the actors,
system behavior, and system houndaries involved in a use case
* Actors
* Use Cases
* Relationships
* System Boundary

systew name Relationship

System Boundary

Actor

Object Modeling with UML Slides Two: 99

Use Case Diagram Example

Mail Order System

Place Or@
% @cel Order %

Customer Check
Order Status
Send Catalog %

Dispatcher

Ship Producf Shipping Company

Object Modeling with UML Slides Two: 60

Project Glossary

Use Case activities are the front line in gathering the user
terms and jargon

Resist using terms other than those familiar to the user since
users will be the final judge of model accuracy

Capture terms that seem to be synonyms or homonywms as
these will cause confusion as modeling progresses

Creating a project glossary fo collect these terms and their
definitions serves not only this use case, but the entire
modeling effort

Object Modeling with UML Slides Two: 61

Use Case Specification

* Use Case Diagrams are good for discussion sessions and “hand
waving”

* Use Case Specifications are the meat of documenting
requirements - (¢lear, concise, complete)

* Use Case Specification is a prose (text) deseription

k

L JHEC SEE .

use case hame - a means of uniquely naming the use case

actor list - identifying all the persons or other systems involved
preconditions - what must be in place for the use case to be possible
flow of events - what actions occurs for the use case to succeed (or fail)
postconditions - what must be in place after this use case completes

Object Modeling with UML Slides Two: 62

Use Case Specification Example

Use case: Manage Basket
actors: Customer

Preconditions:
1. The shopping basket is not empty
2. The shopping basket contents are visible

Flow of events:
1. the customer selects an itewm in the basket
2. the custowmer selects an action:
2.1 ‘delete item:” the system removes the item

2.2 ‘thange quantity:” the system updates the quantity
3. the customer confirms the changes

Posteonditions:
1. The basket contents have been visibly updated

Object Modeling with UML Slides Two: 63

Pescribing Ordered Actions

* Alternative action flows

* “IF” and “SELECT” can be
used to make choices of
actions

* “FOR each” and “WHILE”
are also options for lists

* “Alternate Flow” may be
more convenient than
complex or nested branching
in the Flow of events

* Notice that each
alternate flow may
require its own
postconditions

Use case: Manage Basket

actors: Customer

Preconditions:
1. The shopping basket is not empty
2. The shopping basket contents are visible

Flow of events:
1. the customer selects an item in the basket
2. the custowmer selects an action:
2.1 ‘delete item:” the system removes the item
2.2 ‘thange quantity:” the system updates the quantity
3. the customer confirms the changes

Postconditions:
1. The basket contents have been updated

Alternate Flow of events:
1. the customer selects “Log out”

Postconditions:
1. The basket is empty
2. The custower is not logged in

64

Complex Use Cases w/ Scenarios

A scenario is one path
through a use case flow of
events

The primary scenario
(“Happy Path”) is the most
comwmon or usuval of
behaviors expected

Secondary scenarios depict
paths with the same
preconditions but result of
departures from the
primary scenario

If a scenario is possible, it is
not an exception it is
normal!

69

Use case: Checkout

actors: Customer

Preconditions: ..

Primary Scenario:

1. the customer selects o to checkout”

2. systewm displays customer order

3. the custower is asked to log in with their customer id

4. The systewm displays customer details

5. The custowmer is asked to verify credit card information
6. The customer confirms order and payment

Secondary Scenarios:

1. The basket is empty

2. The custower id is not found
3. The credit card has expired

4. The customer chooses not to confirm the order and payment

Postconditions: . ..

Use Case Modularization

Mail Order System
* A use case may be needed to mnr rdD
accomplish the function of a
more complex business ’

activity
* validating a user’s id

* computing sales/tax
totals

* A use case may be employed

like a “subroutine” within
another use case with the Chot iyl
“includes” stereotype

Customer

66

Use Case Generalization
* Use Cases can be the same or

@d ProdD
different from other use | |
cases Qﬂd BOOD (rma VVD

* Use Case Gen-Spec is a useful

modeling tool Child Use Case Element Inherits can Add can Override
* Parent/Child use cases Relationship yes yes o
capture the sameness and Precondition yes yes yes
difference that is needed in Posteondition yes yes yes
the class diagram Step in main flow yes yes yes
Alternative Flow yes yes yes
Attribute yes yes no
Operation yes yes yes

67

Extension Points

for use cases is the
<<extend>> stereotype

The “Extension Use Case”
describes the ‘added
behavior” that the
extension point condition
requires

* An alternative to Gen-Spec

Custower

A choice of extension may be

denoted by ‘conditions” on
the ‘extends arrow”

68

Mail Order System

Place Order
extension point
out of stock

AN

: s «extend>>

~ (out of stock)
(¢=410)

<<ex’re.nd>>
(out of stock)
(>410)

Cancel Order

Back Order

* Alistair Cockburn s
use case femplate

* Variations are used
to highlight
particular issues in
modeling this
project

* Whichever
tewmplate you use,
clarity of
expression is the
key to success!

USE CASE #

< the name is the goal as a short active verb phrase>

Goal in Con-
text

<a longer statement
of the goal in context
if needed>

Scope & Level

<what system is being considered black box under design>
<one of : Summary, Primary Task, Subfunction>

Preconditions <what we expect is already the state of the world>
Success End <the state of the world upon successful completion>
Condition
Failed End <the state of the world if goal abandoned>
Condition
Primary, <a role name or description for the primary actor>.
Secondary Ac- | <other systems relied upon to accomplish use case>
tors
Trigger <the action upon the system that starts the use case>
DESCRIPTION | Step | Action

1 <put here the steps of the scenario

from trigger to goal delivery,and any cleanup afte>

2 <...>

3
EXTENSIONS Step [Branching Action

la <condition causing branching> :

<action or name of sub.use case>

SUB- Branching Action
VARIATIONS

1 <list of variation s>
RELATED <Use case name>
INFORMATION
Priority: <how critical to your system / organization>
Performance <the amount of time this use case should take>
Frequency <how often it is expected to happen>

Channels to ac-
tors

<e.g. interactive, static files, database, timeouts>

OPEN ISSUES <list of issues
awaiting decision
affecting this use case >
Due Date <date or release needed>
...any other <...as needed>
management
information...
Superordinates <optional, name of use case(s) that includes this one>
Subordinates <optional, depending on tools,

links to sub.use cases>

69

You need to be able to Explain:

* Requirements Engineering

* Use Case
* actor
* gystem boundary
* actor / system relationship

* Project Glossary
Use Case Diagram

* Use Case Specification
* preconditions
* postconditions
* flow of events
* alternate flow
* seenario

* Use Case Extension Points
* «includesy>
* <extends»

*

Object Modeling with UML Slides Two: 70

2.9 Sequence Piagramming in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrams (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 71

Model - 6o - ‘Round

Class Diagram

Use Case Class Diagram

Sequence

Diagram Sequence

Diagram

* Modeling is an iterative process
—> % prototype
* refine

* validate
I

Object Modeling with UML Slides Two: 72

Sequence Diagram

* Sequence Diagrams are an extended form of Communication
Diagram
* (Comwunication Diagrams show actuval objects and their relationships

* Sequence Diagrams show the sequence of messages and events that are
perwitted between objects of specific classes

* Sequence Diagrams use the classes and their services defined
in the Class Diagrams

* Sequence Diagrams explain the actions required fo accomplish
the specific responsibility of a class service including the help
from objects of other classes

Object Modeling with UML Slides Two: 73

Object Interaction w/ Messages

iInstance or

classifier role
anObject:ExampleClass / —__ | anotherObject:OtherClass

object life line —

/ message

\1 1: doSomething (this, that)

message flow /

point of activation / creation

(activation)

> JLTLTTTTTTTPITPPPre E op’[iOna| result /

>

Object Modeling with UML Slides Two: 74

Message Syntax

message flow
message
\ 2o
sb&’ |.1 *[i := I..n] doSomething (this, that) { constraint } /
QU > N
S Qo
@

* Sender requests service
from the receiver using a
message

* wmessage indicates

* wmessage sequencing

* (ferafion t A if the service or
. ’ . operation name is

% recelver s service y e veleated then
the parameter list

* parameters tA must be included
* Fraintot to distinguish the

constraints service
-|- optional addressed.

79

Sequence Expression

* The sequence expression defines the ordering of messages
depicted in a sequence diagram

* A series of integers separated by periods “ .

* Each integer represents the order of messages sent from a particular
activation in an object life line

* Each time a service invokes a new activation in the receiver’s life line a
new integer is added to the list for any messages that that activation
sends

* The number of integers indicates the “nesting” of activations

* The value of the integer indicates the order of the messages sent from a
single activation

* Example: 1.2.2: “ 2nd message of the activation caused by the
3rd message of the activation caused by the first message”

be patient!!!

Object Modeling with UML Slides Two: 76

Iteration Expression

* This is an optional part of a message designation

* There is no formal syntax for iteration, but this works well
for those fawmiliar with programwing language syntax
* Li:=1.n]---iteratethe message n“ times
* [i:=1.81---iteratethe message exactly 8 times
* [while (some boolean expression) 1 - - - “ do while “
* [until (some boolean expression) 1 - - - “ do until “

* [for each (collection of objects)] - - - send one message for each object
found in the collection

Object Modeling with UML Slides Two: 77

Receiver Service / Parameters

* The service name found in the message is the name of a
service provided by the receiving object
* wmessage takes on the “present imperative” tense
* the sender is commanding” the receiver to perform a service

* Note that the message is being sent from a service currently ‘executing”
in the activation of the sender

* Parameters are defined in the class diagram when the service
is specified for a class

%* parawmeters may be typed or un-typed
* parameters may be simple values derived from attributes
* parawmeters may be object references derived from associations
* As a model matures parameters, typing and object references

clarify and bring into focus the actual implementation details
needed in design

Object Modeling with UML Slides Two: 78

Constraint

* This is an optional part of a message designation

* Message constraints indicate a condition or state that the
receiving object must have for the message to “make sense”

* Sowme standard constraint values are used in UML for comwmon
situations of object creation, deletion and temporary use

* {new) - - - an instance is created by the message interaction
* {destroyed} - - - an instance is destroyed by the interaction

* {transient} - - - an instance is created, but is destroyed once the
activation of its service is completed

* |n some instances only the constraint (as a stereotype) may
be used to indicate the simple purpose of a message

* <Lcereatey or «destroy»

> >

Object Modeling with UML Slides Two: 79

Self-Delegaton

Self-Delegation is the
sitvation that the receiver
of a message is also the
sender of a message

Since the message cavses a
new activation, the new
activation sywmbol is
“hested” on fop of the
sender’s activation

The response is optional

If the new activation sends
messages: add an sequence
segment to the sequence
expression

80

anQObiject:
ExampleClass

3: someService

b

3.1: serviceOfSelf

i

3.1.1:serviceOfOther
>

optional response
to self

Conditional Messages

anQObiject:
ExampleClass

3: someService

xk Messaqes may be sent on > 3.1: serviceOfSelf

condition :I

* “if (bool) send message “

* qguard condition 3.1.1: if (bool) serviceOfSther

* [bool] send message

* the bool must be true to 3.1.2: if not (bool) serviceOfOther
>
allow the message to be
Sewd e ool | (e :
&k

optional response
< -------------------- E to Self

Concurrency

* The arrow heads on message
flows indicate synchronous

Or asynchronous messages ;... meservice

anQObiject:
ExampleClass

> .

* synchronous messages

synchronous

>

asynchronous

>

require the sender to wait
(do nothing) until the
activation caused by the
message is completed

asynchronous messages
cause an activation in
the receiver but do not
require the send o wait

* the sender and
receiver’s activations
execute concurrently <

82

3.1: serviceOfSelf

i

3.1.1: if (bool) serviceOfOther
>

3.1.2: if not (bool) serviceOfOther
>

optional response
to self

Instance Deletion

anObject:Exam anotherObject:Ot
pleClass herClass
* At sowme point an object’s
g

usefulness may end 1.1: removeObject (x, ¥) _ |

* The object deletion symbol
indicates that not only has
the activation ended, but
the object no longer exists

* Notice the life line ends!

83

Pat User

anObject:
ExampleClass

anotherObject:
OtherClass

anyObject:
AnyClass

|: startlt

|.1: doOther (this, that)

|.2: doSomething (x,y)

|.3: doThat (this, that)

|.2.1: dolt

Frames to Denote Subsequences

anotherObijecit:
OtherClass

anyObject:
AnyClass

anQObject:
ExampleClass
Pat User
|: startlt
> =

|.1: doOther (this, that)

i

Subsequence A J

|.2: doSomething (%,y)

|.3: doThat (this, that)
]
-

89

Action

anotherObject:
OtherClass

anyObject:
AnyClass

anObject:
ExampleClass
Pat User
|: startlt
> =

|.1: doOther (this, that)

|.2: doSomething (x,y)

|.3: doThat (this, that)

|.2.1: dolt

Sequence Diagrawm in Action

anObject: anotherObiject: anyObiject:
ExampleClass OtherClass AnyClass

Pat User

87

Actors in Sequence Diagrams

A

Pat User
|: startlt

anQObiject:
ExampleClass

88

anotherObiject:
OtherClass

anyObijecit:
AnyClass

Sequence Diagrawm in Action

A

Pat User
|: startlt

anQObiject:
ExampleClass

|.1: doOther (this, that)

89

anotherObiject:
OtherClass

anyObijecit:
AnyClass

Sequence Diagrawm in Action

A

Pat User
|: startlt

anQObiject:
ExampleClass

|.1: doOther (this, that)

|.2: doSomething (x,y)

anotherObiject:
OtherClass

90

anyObijecit:
AnyClass

anObject: anotherObiject:
ExampleClass OtherClass

Pat User
|: startlt

|.1: doOther (this, that)

|.2: doSomething (x,y)

> 1.2.1: dolt

anyQObiject:
AnyClass

anObject: anotherObiject:
ExampleClass OtherClass

Pat User
|: startlt

|.1: doOther (this, that)

|.2: doSomething (x,y)

> 1.2.1: dolt

anyQObiject:
AnyClass

anObject: anotherObiject: anyObiject:
ExampleClass OtherClass AnyClass

Pat User
|: startlt

|.1: doOther (this, that)

|.2: doSomething (x,y)

> 1.2.1: dolt

|.3: doThat (this, that)

o PERRRHERRRS aus

Pat User
|: startlt

anObject:
ExampleClass

anotherObject:
OtherClass

|.1: doOther (this, that)

|.2: doSomething (x,y)

anyObject:
AnyClass

|.3: doThat (this, that)

mE

> 1.2.1: dolt

1.2.2: justDolt

Pat User
|: startlt

anObject:
ExampleClass

anotherObject:
OtherClass

|.1: doOther (this, that)

|.2: doSomething (x,y)

anyObject:
AnyClass

mE

|.2.1: dolt

|.3: doThat (this, that)

Pat User
|: startlt

anObject:
ExampleClass

anotherObject:
OtherClass

|.1: doOther (this, that)

|.2: doSomething (x,y)

anyObject:
AnyClass

|.2.1: dolt

|.3: doThat (this, that)

Pat User

anObject:
ExampleClass

anotherObject:
OtherClass

anyObject:
AnyClass

|: startlt

|.1: doOther (this, that)

|.2: doSomething (x,y)

|.3: doThat (this, that)

|.2.1: dolt

You Need to be able to Explain:

* X % ¥ R N O H H N ¥

Sequence Diagram
Message

Message flow
Sequence Expression
Iteration Expression
Parameters
Constraint
Self-Delegation
Conditional Message
Concurrency
Instance Peletion

Object Modeling with UML Slides Two: 98

24 Aotlvity Diagramming in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrams (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 99

Activity Diagram

* Activity Diagrams are “00 Flowcharts”

* Activities are nodes connected by edges.

* hodes - points where activity or decision occurs

* Action - discrete units of work atomic within the activity
* all node activity is completed before control passes through them
* if a node has wmultiple input edges ALL precedent actions must complete first
* action types

* call action - invokes an activity, behavior or operation
* send signal - sends an asynchronous signal to a “receiving” action node

* accept event action - waits for events detected by its owning object of containing activity

* Control - control the flow of control through an activity
* (Object - objects used in an activity
* edges - paths of flow through the diagram
* control flow - represent the flow of control through an activity
* object flow - represent the flow of objects through an activity

Object Modeling with UML Slides Two: 100

Activity Diagram Example

activity name Send Letter

precondition: letter topic known

/ postcondition: letter sent to address
//
[Write letter] action node

<<localPrecondition>>
address is known \

action node pre- and / Address letter } \ control flow

post- conditions ’
Y4
\ <<localPostcondition>>
valid address affixed

initial node

activity entry pre-
and post- conditions

[Mail letter] / final node

activity adapted from: Arlow & Neustadt p.287

101

optional Send Letter
deCiSion precondition: letter topic known
Cr‘ite ria \ postcondition: letter sent to address

/

Write letter

<<localPrecondition>> w
Is address known? = -
>l else
/ [address is known]

guard condition— [Addrbee et]

v

[Mail letter]

o keyword

\
/

merge node

adapted from: Arlow & Neustadt p.287

102

Car Production

[Design Car] fork

Multiple paths of
activity begin and
proceed (by default)
unaware of each
other!

L

[Market Car } [Manufacture Car}

e i i
i

join /

All incoming paths
must reach the join
before the outgoing
path begins!

SWim
lanes

Car Production

Responsible Business

dimension
name

Corporate Partners
CEO R&D Marketing Manufacturing Dealerships
» [Design Car]
(Market Car) {Manufacture Car}
Sell Car)

109

Time Events

Car Production

Responsible Business

Corporate

Partners

CEO

R&D

Marketing

Manufacturing

Dealerships

| I

<<time expression>>

Starting Date of Bonus Evaluation

Announce Model
Release Date

[Design Car]

(Market Car J

(Manufactu re

=]

icummss: masznsungs

Model Release
Date

//”’/’//’

e e
,/””/’

Sell Car

106

event

Object Flow

Car Production

Responsible Business

Object
flow

Corporate

Partners

CEO

R&D Marketing

acturing

Dealerships

P —

i o~

<<timge expression>>

Starting Date of Bonus Evaluation

Announce Model
Release Date

[Design Car H CarSpecification |~

(Market Car J (Manufacture Calj

Model Release
Date

X—}(Sell Car)

~ Object

107

You Need to be able to Explain:

* Activity Diagram
* hodes, edges, partitions

* Action Node

% pre- post- conditions, call action (activity, behavior, operation), send
signal, accept event

* (Control Node
* decision criteria, gquard conditions, merge node, time event

* Gontrol Flow
* sequential, synchronous, asynchronous

* Object Flow

* object node

Object Modeling with UML Slides Two: 108

2.5 Other Piagrams in UML 2

* UML is a collection of diagramming disciplines that define the

static and dynamic characteristics of a problem or system
* Structure diagrams (static in UML 1)
* (Class - business objects and their struetures
Composite Structure 2
Component
Peployment
Object
* Package
* DPynamic diagrams
* Activity
* |nteraction
* Sequence - system actions that complete a task
* Communication (collaboration in UML 1)
* |nteraction Overview 2
* Timing 2
* \Use Case - user / systewm interactions / interfaces
* State Machine 7 new in UML2

Xk
k
%k
Xk

Object Modeling with UML Slides Two: 109

Composite Structure Diagram

A composite structure diagram depicts the internal structure of a
classifier, as well as the use of a collaboration in a collaboration use.

«component» @ «component» @
1 Order
Account —oO
account .
«focus»
% (] OrderHeader
AccountPayable
Jordereditem «component» @

¢ 1

O— Product
concerns i
*
Lineltem C
Orderableltem

Figure 8.14 - Example of a platform independent model of a component, its provided and required interfaces, and
wiring through dependencies on a structure diagram.

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

Object Modeling with UML Slides Two: 110

http://www.omg.org
http://www.omg.org

Component Diagram

A component is shown as a Classifier rectangle with the keyword «component».
Optionally, in the right hand corner a component icon can be displayed. This is a
classifier rectangle with two smaller rectangles protruding from its left hand side.

5

«component»
Store
OrderEntry
O— «delegate»
«component» Person
o ©
OrderEntry :Order Person

Orderableltem

=

Orderableltem

«component»

:Product

«component»

:Customer

5

Account L

«delegate»

—C

Account

Figure 8.12 - An internal or white-box view of the internal structure of a component that contains other

components as parts of its internal assembly.

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

Object Modeling with UML Slides Two: 111

http://www.omg.org
http://www.omg.org

Peployment Diagram

The physical hardware is made up of nodes. Each component belongs on a
node. Components are shown as rectangles with two tabs at the upper left.

Bank Server Real Estate Server
==Database== ’E; Mortgage Application % Listing e
CustomerDB — —»MultipleListings
1
A I \
_______ 7 component
interface IMortgageApplication IListing
M / =
] //
I node P
i
: /,/ — dependency
i — < / connection
i aPC //

TCPIIP g%] Buyerinterface TCPIIP

“Practical UML™: A Hands-On Introduction for Developers,” http://dn.codegear.com/article/31863

Object Modeling with UML Slides Two: 112

Object Diagram

Each rectangle in the object diagram corresponds to a single instance. Instance names
are underlined in UML diagrams. Class or instance names may be omitted from object
diagrams as long as the diagram meaning is still clear.

instance name - class name
mathStat:Department
math:Department
statistics:Department
appliedMath:Department mathEd:Department

“Practical UML™: A Hands-On Introduction for Developers,” http://dn.codegear.com/article/31863

Object Modeling with UML Slides Two: 113

Package Diagram

Package Diagrams are used to reflect the organization of packages and their elements. When used
to represent class elements, Package Diagrams are used to provide a visualization of the
namespaces. The most common use for Package Diagrams is to organize Use-Case Diagrams and
Class Diagrams, although the use of Package Diagrams is not limited to these UML elements.

cd Logical View/

GenApply Controller e
+ Loader = + Loader % + Inkeger
+ Shape «merges + Time «imports
+ Time m + ConnSeq
ConnSeq
+ ConnSeg

+ NetAbstract

(from Controller)

http://www.sparxsystems.com.au/resources/umli2_tutorial/uml2_ packagediagram.html

Object Modeling with UML Slides Two: 114

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Comwmunication Diagram

A communication diagram, formerly called a collaboration diagram, is an interaction diagram that shows
similar information to sequence diagrams but its primary focus in on object relationships. On
communication diagrams, objects are shown with association connectors between them. Messages are
added to the associations and show as short arrows pointing in the direction of the message flow. The

sequence of messages is shown through a numbering scheme.

cd Communications /

1: createContact

Staff Member
1.1: createContact ¢
2.1: saveContact —DC)
44— 1.2: openCon

tact
Edit Contact Contact Manager

2. save ¢

View Contact List Persistence Manager

* 2.3 inseContact

? 2.2: makePersistant

Contacts

http://www.sparxsystems.com.au/resources/uml|2_tutorial/uml2_packagediagram.htm

Object Modeling with UML Slides Two: 115

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Interactive Overview Diagram

An Interaction Overview Diagram is a
form of activity diagram in which the
nodes represent interaction diagrams.
Interaction diagrams can include
sequence, communication, interaction
overview and timing diagrams. Most of
the notation for interaction overview
diagrams is the same as for activity
diagrams, for example initial, final,
decision, merge, fork and join nodes are
all the same. However, interaction
overview diagrams introduce two new
elements, interaction occurrences and
interaction elements.

Requestitem
ref /
item not found SearchForttem
item found
ret /
Checkout
ret /
Cancel Sale _[’L? Sale Finalized?
_— ale Finalized®?
Yes
ret /
CreateRecord
®

http://www.sparxsystems.com.au/resources/uml|2_tutorial/uml2 packagediagram.html

Object Modeling with UML Slides Two: 116

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

Timing Diagram

UML timing diagrams are used to display the change in state or value of
one or more elements over time. It can also show the interaction between
timed events and the time and duration constraints that govern them.

td Timing Diagram/
Il- {d..d*3} -!'I
WaitAccess
T . Code 0..13
= WsaitCard
Idle _—
Start 1 1\ 1 1 1 1DK {tf t+3}1 1 1 1 1 1 1 1 1 1 1
e
% NoCard
=
o
< HasCard
*

e |(_ [d..d*3} _+|
%
§ Idle X WaitCard V%itﬂu:ceXs Idle
@
n
o
- "ttt 1+ 1+—F+—1+—
ime (ms) 0 10 20 230 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190

http://www.sparxsystems.com.au/resources/umli2_tutorial/uml2_ packagediagram.html

Object Modeling with UML Slides Two: 117

http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html
http://www.sparxsystems.com.au/resources/uml2_tutorial/uml2_packagediagram.html

State Machine Diagram

A state machine diagram is a graph that represents a state machine. States are rendered by
appropriate state symbols, while transitions are generally rendered by directed arcs that connect
them or by control icons representing the actions of the behavior on the transition.

ATM)

(VerifyCard}

§

[OutOfServicJ

J outOfService

acceptCard
ReadAmount : borted
ReadAmountSM aborte
I Card
[VerifyTransaction} releasel-ar (

ReleaseCar%

“Unified Modeling Language: Superstructure,” Version 2.0, formal/05/07/04, http://www.omg.org

Figure 15.48 - SubmachineState with usage of exit point

Object Modeling with UML Slides Two: 118

http://www.omg.org
http://www.omg.org

UML 2 Syntax Wrap-Up...

* This slide set is a good INTROPUCTION and OVERVIEW of the
syntax and semantics of UML 2 diagrams

* To truly understand and master the UML 2 syntax requires
extensive practice in using the language to document and
analyze REAL projects with REAL teams

* Like any other LANGUAGE UML 2 is quickly and easily
forgotten without sowme reinforcing practice

Object Modeling with UML Slides Two: 119

