
©LJW 2014 : OODBMS::

CS630
Object-Oriented DBMS

Fundamentals
Les Waguespack, Ph.D.

���1

©LJW 2014 : OODBMS::

Data Base Models

• 1960's – Hierarchical  
– extended the access functionality of file management – compartmentalized security,
recovery and backup 
– centralized file description and documentation

• 1970's – Network 
– standardized data model definition and access (CODASYL) – introduced query language/
report writer capabilities

• 1980's – Relational  
– formalized semantic behavior of queries (normalization) – facilitated "end user" access
via standard (SQL) 
– achieved cross platform and distributed consistency

• 1990's – Object Oriented 
– seeks to recapture high-performance in complex models – seeks to bind application and
data management models – seeks to exploit reusable data models 
– promises to make multi-media ubiquitous

���2

©LJW 2014 : OODBMS::

"Model i Model"
→ Despite some lingering concerns for performance the relational model is

considered the model of choice for clarity, consistency, and integrity for
designing databases.

← The OODB approach promises "blazing" speed for "wired" data relationships
via the "oid" (object id) pointer interconnections.

→ For the most part the relational implementations lack strong connection
between the "data model" and the "transaction model"s that are applied to
them (data and procedures are separate).

← The OODB depends on "wired" relationships that may impede evolution/
maintenance of data models and violates basic semantic principles of
entity/relationship modeling.

���3

©LJW 2014 : OODBMS:

Model / Problem Fit
→ Relational fits data problems that are regular and homogeneous.
← OODB fits data problems that are irregular and sparse.

N
um

be
r o

f o
bj

ec
ts

 →

Number of instances →

Relational Fit	

!
Object Fit

©LJW 2014 : OODBMS:

Model / Problem Fit
→ Relational fits data problems that are regular and homogeneous.
← OODB fits data problems that are irregular and sparse.

N
um

be
r o

f o
bj

ec
ts

 →

Number of instances →

Relational Fit	

!
Object Fit

Graphs

Inventory

VLSI
Circuits

CAD/CAM
Bill of Materials

Portfolio Mgmt

Flat Files

Credit Accounts

Phone List

Customer Account
Payroll

©LJW 2014 : OODBMS::

Object "Relations"

• Objects have identity as objects independent from their state (regardless of
the content of their instance variables).

• Objects are referenced in an object system via these identities referred to
as OID's or Object ID's.

• Object access is always by reference, (i.e. by following the OID to the object
itself.

• Object assignment (X := Y) is accomplish by reproducing the OID rather
than by reproducing the object. Therefore X.printon and Y.printon produce
the same result even after the methods (X.value ← 9 and Y.value ← 13).
The both printout "13".

���6

©LJW 2014 : OODBMS: ���7

Object "Relations"

Executable Main Memory

©LJW 2014 : OODBMS: ���8

Object "Persistence"

Main Memory	

“image”

Persistent Memory	

“image”

Sa
ve!

! !
Lo
ad

object store

©LJW 2014 : OODBMS:

Persistent Memory	

“image”

���9

Unitary "Address Space"

Main Memory	

“image”

©LJW 2014 : OODBMS: ���10

"Object DBMS”

Main Memory	

“image”

Persistent Memory	

“image”

Object
DBMS

object store

©LJW 2014 : OODBMS: ���11

"Object DBMS”

Object server is the steward
of the disk image of objects
and provides shared access
to multiple applications,
arbitrating the access
through a cache of its own.

Object
server

Object
manager

Application
Object manager provides a
local cache where transient,
application bound, "images"
of objects "live" during access
and modification until they are
committed or reverted.

object store

©LJW 2014 : OODBMS: ���12

"Object DBMS”

Object
server

Object
manager

Application

manager!
cache!

server!
cache!

object store

©LJW 2014 : OODBMS: ���13

Multi-access

Object
server

Object
manager

Application

Object
server

Object
manager

Application

object store

©LJW 2014 : OODBMS: ���14

Multi-database

Object
server

Object
manager

Application

Object
server

Object
manager

object store

object store

©LJW 2014 : OODBMS: ���15

Object
server

Object
manager

Application

manager!
cache!

server!
cache!

object store

©LJW 2014 : OODBMS::

object
manager

Distributed Components

���16

object
manager

remote procedure calls

object
server

object
manager

©LJW 2014 : OODBMS::

Implementation
• Methods: 

– bound at compile time the methods may be stored external to the object
store, but cannot be modified during a session 
– bound dynamically, changes in methods are immediately in "effect" for
subsequent messages 
– stored external to the database allows "de- synchronization" and
integrity breaches 
– stored in the object store configuration security is greater and more
likely to survive a rollback and recovery cycle

• Transactions: 
– object "locking" evokes all the standard concurrency control problems
found in any shared access data management circumstance.  
– object "clustering" may be used to control "lock proliferation" and
improve locality of reference, access patterns  
– classic "object application" transactions are very long requiring large
amounts of "cache" 
– locks at checkout vs. locks at check in!

���17

©LJW 2014 : OODBMS::

Implementation
• Versioning: 

– CAD/CAM-like applications require the ability to maintain versions in
linear and tree-structured ancestry – this is common in work group
situations where several technicians may be addressing the same "system"
in "part" increments.

• Query Support: 
– there is Object SQL on the market with some effort to address a standard  
– in most instances query support is really "report" support since access
paths must be established at DDL- time in order for appropriate OID paths
to exist to allow collections or families of objects to be scanned in a query
processing mode. This evokes memories of hierarchical and inverted data
model issues with "design-time" rather than "decision-time" query
definition. Many different access acceleration aids are available (hashed,
B-tree, "object rape" approaches).

���18

©LJW 2014 : OODBMS::

Implementation

• Persistent Object Definition: 
– dynamic binding almost requires that persistent objects and
"application" objects reside in the same address space (at least part of the
time); this leads to a unified class library approach where persistent objects
are simply object derived from a "persistent object ancestor."

• To "connect" persistent and dynamic object behavior requires some form of
"interpretive" execution which is not native to compile-time based object
systems (C++). This conflict leads to less than "pure" object oriented
implementations of the object database interface.

���19

