
©LJW 2014 - OOSE::

CS630
Object-Oriented

Systems Engineering
Les Waguespack, Ph.D.

���1

©LJW 2014 - OOSE:

Building Object-Oriented Systems

���2

Com
ple

xit
y Flexibility

Qual
ity

Responsiveness

©LJW 2014 - OOSE: ���3

Complexity

• Represent any kind of data
in any possible structure

!
• Encapsulation of related

data and procedures hides
complexity

!
• Natural reflection of real

world simplifies access and
understanding

©LJW 2014 - OOSE: ���4

Flexibility

• Modularization isolates
changes and minimizeds their
impact

!
• Layered development

insulates applications from
models and classes

!
• Inheritance handles

generalization, specialization
and exceptions

©LJW 2014 - OOSE: ���5

Responsiveness

• Efficient storage, retrieval and
processing of complex
structures

!
• Encapsulated procedures react

to events immediately
!
• New applications can be

developed an order of
magnitude faster

©LJW 2014 - OOSE: ���6

Quality

• Reuse of proven, reliable code
greatly reduces defects

!
• Rapid prototyping with end

users maximizes fitness to
purpose

!
• Graphical interface and object

visualization increase usability

©LJW 2014 - OOSE: ���7

STANDARDS

©LJW 2014 - OOSE: ���8

OBJECT
MANAGEMENT

GROUP

Distributed
Transactions

Concurrent
Execution

Notification of
Events

Versioning of
Objects

Internationalization

Volvo

Hp
Microsoft

Ibm

Apple Gm

At&T
Boeing

Intel

Gte
Motorola

Sony

©LJW 2014 - OOSE:

Object Request Broker

The Object Request Broker approach attempts to
generalize the interaction of objects.

It provides a common interface for objects of
different paradigms and it improves the
modularity of the software by allowing
differing paradigms to coexist.

It attempts to allow the advance of OO without
commitment to a particular OO architecture.

���9

OBJECT
MANAGEMENT

GROUP

©LJW 2014 - OOSE:

A Generalized Object Model

���10

Object
Request
Broker

Requestor

messages

Providers

©LJW 2014 - OOSE:

Object Coupling

���11

loose
coupling

tight coupling

remote procedure calls

©LJW 2014 - OOSE:

OMG Reference Model

���12

Editor

object services
Storage

Storage

Integrity Security Query Versions

Application objects Common facilities

object request broker

CAD

Spreadsheet

A/R
Help

Printing
EMail

©LJW 2014 - OOSE:

Software Component
Industry

The "object interaction platform" will allow "plug and
play" object components and boost a new software
product segment
Software component vendors will face an evolution
similar to hardware component manufacturers
Cataloging, sorting, identifying and selecting
components for a project will require a new set of
standards and practices

���13

©LJW 2014 - OOSE:

Component Quality
Assurance

There is no precedent for accepting "off the shelf"
software with confidence in mission critical
applications because software has historically been far
less reliable than hardware
Quality standards will need to be developed and
administered by an industry "watchdog" to boost
confidence and support commercialization
Quality "stamps of approval" will evolve that will
"guarantee" the merchantability of software
components

���14

©LJW 2014 - OOSE:

Software Component
Commerce

We are accustomed to licensing packages or products
that are "one level"
Components will be embedded and therefore less
visible to the buyer or the seller of the "final" product
The compensation structure will likely resemble that
of commercial music (royalties, performance fees,
"suite" fees, etc.)
In any case how is "inheritance" addressed?

���15

©LJW 2014 - OOSE:

Evolving a Corporate
Computing Culture

Business computing is straddling a "mainframe vs.
personal computer" based computing model
The culture of each is orthogonal to the other.

corporate asset vs. one time solution
long lead time vs. "instant" gratification
global awareness vs. home grown
standard vs. convenient and easy to use

���16

©LJW 2014 - OOSE:: ���17

Applications

Models

Classes

Rapid prototyping
provides fast,
effective applications

Operational models
meet specialized needs

Standardized data and
procedures protect
corporate assets

End
Users

Business
Units

I. S.

A Possible Architectural and
Cultural Alternative

©LJW 2014 - OOSE:: ���18

Applications

Models

Classes

Application
Developers

Model Builders

Class Constructors

End
Users

Business
Units

I. S.

Cultural Alternatives Will Require
Professional Alternatives

©LJW 2014 - OOSE:

New Job Titles and
Job Functions

Analysts, designers, programmers, quality assurers evolved to
drive the "software life cycle" as conceived by the IS culture

Analysis, design, programming, and quality assurance are
intrinsic professional skills needed to manufacture object based
systems

The software life cycle may not be appropriate any more for this
type of software m manufacture

The division must blur between domain specialist and
technologist

"Users" will be come more "technical"

���19

©LJW 2014 - OOSE:

Diffusing Object
Orientation

The application/model/class architecture is appealing,
but is not consistent with contemporary patterns of
software development (particularly corporate
systems)
Object orientation is intrinsically more "difficult" than
any current form of "productivity" paradigm in use in
industry.
The focus on "models" in the object orientation
paradigm is an unknown cost/risk in corporate IS
development.

���20

©LJW 2014 - OOSE:

Summary of 
Object Orientation Impacts

System Modeling

Object Oriented Analysis

Object Oriented Design

Object Oriented Programming

Reuse

Object Oriented Database

Enterprise Management

Software Merchandising

Information System Frameworks
���21

©LJW 2014 - OOSE:

Impacts…

OO Modeling: natural for analyst and domain expert;
inheritance, polymorphism and message passing is a
natural framework identifying "real world"
relationships and interconnections; patterns of
similarity and difference are defined canonically; class
hierarchy captures an "abstract structure" of the
domain that is comparable for purposes of "goodness"
metrics.

���22

©LJW 2014 - OOSE:

Impacts…
OO Analysis: more closely defining objects found in the
"natural" domain promotes more incisive inspection
and uncovers more information that is intrinsic to the
particular application domain's distinctness within the
more general application area; facilitates a high degree
of modular independence in domain description;
classification as a primary analysis activity opens the
door to greater user participation and focus on the
"user world" view and improve communication.

���23

©LJW 2014 - OOSE:

Impacts…
OO Design: co-locating the behavior and state
definition surpasses abstract data typing as a means
of characterizing object behavior; naturally imposes
encapsulation and information hiding ; coupling and
cohesion are manageable; class hierarchies can mirror
"user view" objects with "information view" object
with little obfuscation; the use of class libraries to
"clone" close relatives leverages design experience and
normalizes design practice and standards (e.g.
Windows, Mac GUI's).

���24

©LJW 2014 - OOSE:

Impacts…
OO Programming: The modeling power with
abstractions in analysis and design are carried
through in OOP to organize and partition the
software; inheritance and polymorphism directly
support modularization and complexity control; class
definition allows programmers to extend the base
language to meet application specialized coding
paradigms or disciplines; class libraries not only
organize code for the current task, but archive it for
future similar tasks.

���25

©LJW 2014 - OOSE:

Impacts…

Reuse: OO development naturally deposits
abstractions, models, and class definitions that may be
reused on the next similar task by defining the next
application as a variation on the old (rather than from
scratch); OO is particularly interesting because reuse is
feasible at each stage in the application development
(analysis, design, programming); the prospect of "object
normalization" may allow automated reuse.

���26

©LJW 2014 - OOSE:

Impacts…

OO Database: Still evolving most OODB's are elaborate
class libraries primarily accessible via OOP; the class
library serves as data dictionary and software copylib
in favor of data administration; there is hope that
"object normalization" will allow the high degree of
semantic integrity analysis in OODB as is now possible
in relational database domain.

���27

©LJW 2014 - OOSE:

Impacts…

Enterprise Management: As database management
evolved to enable enterprise modeling OO has the
potential to extend the tool power of data dictionaries
and data repositories to capture policy; OO will allow
the degree of information tool integration that may be
used to truly "manage the information resource as a
whole."

���28

©LJW 2014 - OOSE:

Impacts…

Software Merchandising: Application development
frameworks and GUI's are natural prototypes for
application domain frameworks (accounting,
inventory, office automation, etc.); the "plug-
compatible" potential of objects means that "modular"
products will be more common as they already are in
the Mac and Windows desktop arena.

���29

©LJW 2014 - OOSE:

Impacts…
Information Framework: Although each of object
orientation's facets offer benefits (analysis, design,
programming, database, even modeling) it is the
prospect that an entire system framework may be
devised from these technologies that unifies the life
cycle, the documentation, the notation, the
terminology, and the underlying abstractions. To
achieve this framework will require IS reorientation,
task structure, organization structure, job structure
and titles, IS - user communication paths, and above
all an organizational commitment to the object
oriented paradigm.

���30

