
The OO Paradigm
Without a Language or Syntax!
What is the object world a! about?

The Object-Oriented System Ontology
This ontology is consistent with the practice in computer science and information science categorizing a domain of con-

cepts (i.e. individuals, attributes, relationships and classes). In this ontology of the object-oriented paradigm I attempt to
minimize the vestiges of implementation languages and development methodologies in order to expose the core nature and
value of object-oriented concepts.

1. Individuals

The most concrete concept in the object-oriented paradigm is the object. It derives from the living physical experience of
humans seeing and touching things. In that experience objects are separable – distinguishable from other objects by nature of
their physical presence and location regardless of any other discernible characteristics they may possess. This characteristic
of “individual-ness“ leads to the property of identity. Identity enables the unambiguous designation or selection of every ob-
ject physical or abstract within a domain of discourse.

Objects have an “inside,” an “outside,” and a “surface” that separates the inside from the outside. An object contains
anything that exists on the “inside” of the object. Since the surface of most physical objects is opaque, usually the contents
are invisible and untouchable by anyone on the outside. This property renders the object’s contents impervious to meddling
and is called encapsulation (or information hiding).

2. Attributes

Attributes are those characteristics that are inherent to an object. In the object paradigm attributes define either data or
behavioral characteristics - each of which has a static and dynamic form. Attributes in static form combine to define what is
called the structure of an object. From inception to extinction the structure of an object is immutable.

2.1. Data Attributes

Data attributes serve to store information (data) within an object and implement the property of remembrance. Data at-
tributes are completely contained within an object protected by encapsulation. Remembrance is manifest statically as “what
can be remembered,” a data attribute variable. It is manifest dynamically as a definition of “what is remembered,” a particu-
lar data attribute value.

2.2. Behavioral Attributes

Behavioral attributes serve to define the animate nature of an object. In its static form each behavioral attribute defines
“what an object can do,” usually called a service. In its corresponding dynamic form this behavioral attribute defines “how a
service is accomplished,” usually called a method (or operation). Methods define “activity” performed in an object model. A
method may simply be access to remembrance inside an
object or it may be complex sometimes employing the in-
volvement of other services of the same or other objects to
accomplish its responsibility. Methods reside within the
object subject to encapsulation while services are visible at
the surface of the object available for collaboration.

3. Classes

The class concept combines both a definition of struc-
ture and the generation of object(s) based on that structure.
Every object is an instance of a specific class and shares
the same static structure defined by that class with every
other object of that class. The responsibility of generating
instances that share the same structure is the property of
progeny. The class concept thereby fuses the existence of
the objects to that of their class; objects cannot exist inde-
pendent of their defining class. Objects are said to be
members of their class.

THE OBJECT-ORIENTATION “GREEN CARD” SEPTEMBER 22, 2007

 ©2007, Les Waguespack, Ph.D. PAGE 1

Object!
Oriented
Concepts

object

class

remembrance
property

progeny
property

encapsulation
property

variable
data attribute

method
behavioral attribute

service
behavioral attribute

value
data attribute

identity
property

membership IN
property

message passing
relationship association

relationship

inheritance
relationship

instance
relationship

polymorphism
relationship

membership OF
property

Along with the static behavioral structure of service defined in the class, the dynamic behavioral attribute, method, may
also be defined. Defined in the class this dynamic behavioral attribute, “how a service is accomplished,” is identical for each
and every object generated of that class.

4. Relationships

Relationships in the object paradigm exist on two dimensions: structural and behavioral.
The structural relationships are based primarily on the properties of identity, remembrance and
progeny.

4.1. Structural Relationships

4.1.1. Inheritance

Inheritance is a relationship between classes. The structure defined in one class
is used as the foundation of structure in another. By foundation it is meant that all
the structure of the first is replicated in the second and additional structure in terms
of data attributes or services may be added or methods for replicated services may
be altered (overridden). The replicated structure defines how the two classes are
alike. The additions or alterations define how they are different. The class defining
all the structure shared between them is called the parent class (super class, gener-
alization) while the other is called the child class (sub class, specialization). It is
said that the child class proceeds from or is derived from the parent class. Succes-
sive application of inheritance defining related classes results in a class hierarchy.

4.2. Behavioral Relationships

The behavioral relationships are based primarily on the property of membership
IN, and the capacity of objects to “act.”

4.2.1. Association

An association is a relationship between objects. Objects are intrinsically sepa-
rable by way of the identity property. At the same time, humans are compelled to
categorize their experience of things in the physical world. Humans superimpose
groupings that collect objects into sets (a foundation of mathematics based on hu-
man experience). Objects become members in a group only by designation. This
property is called membership. Membership is independent of identity or attribute.
This property also permits humans to identify an object that is not in a set (i.e. dis-
crimination). (Membership in a group is discretionary and is distinct from member-
ship of a class which is intrinsic by way of progeny.)

Variations on membership derive from the intent of the relationship and gener-
ally fall into the categories of association and composition. Any designated collec-
tion of objects defines a relationship between those objects called association. By the simple fact that they are members in
the same relationship that membership defines how they relate. When the existence of the objects themselves is coupled with
their membership; that is to say, if one (or the other or both) would not exist if it were not related to the other then the rela-
tionship is called a composition.

4.2.2. Message Passing

Message passing is a relationship between objects. Message passing relies on the identity property and services. A mes-
sage is a communication between a sender object and receiver object where the sender requests that the receiver render one
of its services. The sender and receiver may be one in the same object. The message designates the receiver’s identity, the
receiver’s service to be performed along with any parameters that the service’s protocol may require. Since the message is a
request there are no implicit timing constraints determining when the service is accomplished. Unless explicitly designated a
message results in an asynchronous activity on the part of the receiver without acknowledgment or returned information.

4.2.3. Polymorphism

Polymorphism results from the interplay of message passing, behavioral attributes and classes. A sender directs a mes-
sage to a receiver designating a service of that receiver. A message does not designate a method. The regime that determines
which method satisfies a service request is called binding. If the method (corresponding to the service) is defined in the class
of the receiver object, that method is invoked. If the service of the receiver’s class is inherited (and not overridden), the cor-
responding method defined in the nearest progenitor (parent class) of the receiving object’s class is invoked.

THE OBJECT-ORIENTATION “GREEN CARD” SEPTEMBER 22, 2007

 ©2007, Les Waguespack, Ph.D. PAGE 2

Without syntax?

Every language that is invented
to express concepts carries with it
the understanding and the biases
of the inventor. Depending on
his/her purpose(s) those biases
simplify certain tasks performed
with the language but may ob-
scure the underlying concepts.

Programming language design
must deal with the feasibility of
automated translation and in-
teroperability with other pro-
gramming languages and operat-
ing systems. Compromises and
assumptions are chosen to make
the resulting language efficient,
effective and marketable.

The goal of this description of
the object-oriented paradigm is to
succinctly make the concepts un-
derstandable - an ambitious task
to say the least!

- Professor Waguespac#

