
©LJW 2014 - OOSE::

CS630
Component Architecture

Les Waguespack, Ph.D.

���1

11: CS630 OO Systems Engineering Les Waguespack, 20011

C o m p o n e nt A ,B, C ’s

• • • • • •

• • •

ORB

©LJW 2014 - OOSE:

Component A, B, C’s

���2

Storage

object request broker

©LJW 2014 - OOSE:

Component

“a software component is a physical packaging of
executable software with a well-defined and
published interface.” Hopkins - 2000

software 
physical package » executable  
well-defined 
interface

���3

©LJW 2014 - OOSE:

Component
“a coherent package of software artifacts that
can be independently developed and delivered as a
unit and that can be composed, unchanged, with
other components to build something larger.”
D’Souza - 1999

coherent 
software artifacts 
independently developed » independently
delivered 
composable unchanged » unit of construction

���4

©LJW 2014 - OOSE:

Component
“a software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by a third party.” Szyperski - 1998

contractually specified interfaces » explicit
context 
deployed 
composition by third party

���5

©LJW 2014 - OOSE:

Engineering Drivers
Reuse

“the ability to reuse existing components to
create a more complex system.”

Evolution
“by creating a system that is highly
componentized, the system is easier to
maintain. ... changes will be localized ... with
little of no effect on the remaining components.”

���6

©LJW 2014 - OOSE:

Component “World”
available components to reuse

in-house or third party supply
a component model supporting assembly and
interaction

a standard “backplane” for component
communication

• a process and architectures to support
component based development

component development tools, frameworks, and
environments

���7

©LJW 2014 - OOSE:

Component = functionary

Components are components because of how they
interact rather than because of how they are
constructed

“a natural extension of the object model”
may not be created using OO tools or languages
interact through carefully defined interfaces and
“messages”

���8

©LJW 2014 - OOSE:

Component Interaction
• they must find each other

the component model must support a “reference model” with
“registration”

• they must converse with messages
the component model allows components of different
implementation technologies to publish their interfaces, send
messages and pass data.

• component model standards
DCOM - distributed component object model (Microsoft)
CORBA - common object request broker architecture (OMG)
EJB - enterprise Java beans (Oracle / Sun Microsystems)

���9

©LJW 2014 - OOSE:

There must be a “backplane”

���10

Storage

object request broker

©LJW 2014 - OOSE:: ���11

Applications

Models

Classes

Rapid prototyping
provides fast,
effective applications

Operational models
meet specialized needs

Standardized data and
procedures protect
corporate assets

End
Users

Business
Units

I. S.

Components and Architecture

©LJW 2014 - OOSE:

Component Modeling
UML Component metamodel

component view 
object packages building components » interface
declaration

Traceability
constituent object models 
extension points 
public and private interface definition

XML standards for net-based systems
Extensible Markup Language
XML is a potential “Rosetta stone” for component
interfaces
any component supporting an XML interface can interact
with any other

���12

©LJW 2014 - OOSE:

What Component?!
Components vs. Applications

building block vs. complete solution
re-target-able vs. tailor made
problem architecture derived vs. solution policy derived
“naturally occurring interface” vs. finely focused
algorithmic definition
Which pieces should be included in a LegoTM or TinkertoyTM
set???

Core problem domain functionality
what distinguishes the domain? 
what unique expertise exists in it? 
what “service” in the domain can evolve with the same
interface?

���13

©LJW 2014 - OOSE:

CORBA™ Component Model

���14

11: CS630 OO Systems Engineering Les Waguespack, 200113

C O RBA ™ C o m p o n e nt M o d e l

C ORBA
C o m p one nt

c
allb

a
cks

ORB

tra nsa ction se c urity p ersiste nc e notific ation

c ontainer

intern alextern al

Ho m e
C

lie
nt

©LJW 2014 - OOSE:

CORBA™ Component Model
Interfaces and Services

���15

11: CS630 OO Systems Engineering Les Waguespack, 200114

C ORBA
C o m p one nt

c
allb

a
cks

ORB

tra nsa ction se c urity p ersiste nc e notific ation

c ontainer

intern alextern al

Ho m e

C
lie

nt

C C M ™ Int e rf a c es a n d Se rv i c es
“ f a c tory” o p e r a tio ns
(c r e a t e , d estroy) f or
e ntity c o m p o n e nts, th e
“h o use c l e a n in g ”
int e rf a c e

p ro v id es a c c ess
to PSDL to store
a n d re c o v e r th e
p e rsist e nt st a t e
o f a c o m p o n e nt
inst a n c e .

p ro v id es a c c ess
to tr a ns a c tio n
p ro c essin g f or
b e g in / e n d tr a ns
a n d
r e c o v e r a b ility .

p ro v id es c o m p o n e nt
se c urity a c c ess/ p riv il e g es
v i a c o n fig ur a tio n fil e

fun c tio ns
r esp o n d in g to
se rv a nt re q u ests
f or int e rn a l
c o m p o n e nt a n d
se rv e r
r eso urc es.

e v e nts m a n a g e d
b y th e c o nt a in e r

c li e nt sid e
fun c tio n a lity
a c tin g a s th e
c o m p o n e nt ’s
a g e nt

©LJW 2014 - OOSE:

CORBA™ Component Services
Transaction

defines component instances and protocol for client
transaction management

Security
access, deployment, permissions

Events
notification of defined component and transaction events

Naming
support component finding components

Persistence
container-managed persistence, saving and restoring
component state from persistent state

���16

©LJW 2014 - OOSE:

CORBA™ Component Types
• Service

used for a single service call, a self- contained function
with simple result

Session
defines an ongoing relationship with client during system
up-time, yet transitory

Process
a reliably persistent object possible aligned to a transaction

Entity
represents truly persistent item such as customers,
account, etc. closely aligned to database & transactions

���17

©LJW 2014 - OOSE:

Component Issues
Platforms

transportable vs. reproducible component
Architecture

framework dependency (DCOM,CORBA..)
Specificity

what size should a component be?
Versioning

inter-component compatibility and support
Quality

immutability vs. extensibility, side-effects, documentation,
testing

���18

©LJW 2014 - OOSE:

The Next Logical OO Step
focuses on reuse of existing software rather than
software development
extends the OO paradigm benefits of reuse and
modeling to net-based
decentralizes the construction of complex,
distributed systems
extends the promise of “software-ic” to the
distributed enterprise
enables exploration/exploitation of connectivity
(lan, wan, web, net)
creates a new software industry segment and
consulting arena

���19

