
Object Modeling with UML 2
Finding Classes

February 5, 2013
This is a project to practice on your own what you’ve learned.

©L. J. Waguespack, Ph.D., 2007

Telegram Problem Narrative
Description:
A procedure is required to process a
stream of telegrams. This stream is
available as a sequence of letters, digits
and blanks on some device. There exists
a buffer of fixed size, into which portions
of the input stream can be loaded on
demand, and from which characters can
be retrieved sequentially. If this buffer
becomes empty during execution, it is
refilled by transferring the next portion
of the input stream into the buffer. Every
telegram in the input stream is com-
posed of words that are separated by se-
quences of blanks, and the telegram is
delimited by the reserved word "ZZZZ".
The telegram stream is terminated by
the occurrence of an empty telegram. An
empty telegram is a telegram composed
of one or more blanks followed by the
delimiter "ZZZZ". The objective of the
procedure is to produce a "clean" listing
of each telegram accompanied by the
chargeable word count and a message
indicating the occurrence of an over
length word. A "clean" listing of a tele-
gram is an image of the telegram that
prints in lines of 120 characters and
where the redundant blanks are deleted.
All words in the telegram except STOP
and ZZZZ are chargeable, and words of
more than twelve characters are consid-
ered over length.

CLASS Finding Exercise
Given the narrative above you should be able to

identify primary issues in the Telegram Problem that
would be modeled effectively with classes in a class
diagram. Although the problem space may seem to
be very “technical” (“computerese!”) try to focus on
the elements that are of importance to the telegram
company, the customers, and the users of this
system.

A popular way to look for potential classes is to
identify all the nouns (both simple and modified by
adjectives) in this problem statement. Among those
nouns there will surely be elements of importance to
the system that processes telegrams that will need to
appear in a class diagram. Make a list and then
consider challenging individual nouns as “useful” or
“not useful” to understanding the problem.

Once you’ve pared down the list of potential
classes, then go about listing the attributes that each
class might need to “remember” in its role in the
system. Remember attributes are atomic, so if more
than one of anything needs to be “remembered” that
will probably require some kind of “collection” based
on an association.

Finally, once you have a prospective list of
classes, you need to “animate” each class by
proposing some behavior that it should provide to the
community of objects that will be instantiated by the
classes you’ve identified so far.

This homework doesn’t require any diagramming
and you can simply use text to record your findings in
the project. At the next class you’ll be asked to share
your findings with other students in the class so be
sure to bring your written homework findings.

P.S. Don’t spend more than an hour on this
homework project !!!

(see What’s a buffer? on the next page.)

What’s a “buffer?”
This problem was devised many years ago for

students familiar with the details of computer
hardware and software. At least one of the terms
used is specific to that technology - “buffer.”

A buffer is an area of storage (either in hardware
or software) that is used to compensate between two
different rates of transfer speed. For example you
could call a loading dock (where trucks back up to
load and unload their cargo) a buffer. It’s a “staging
area.”

A bus station is a buffer because the passengers
arrive over a period of time but board the bus
generally all together. When they arrive at a
destination all the passengers exit the bus together,
but may hang around the destinations leaving as they
gain other transportation or another bus arrives to
continue their journey.

The only thing that might be special about the
buffer in this problem is that whatever arrives to go
into the buffer maintains that sequence of arrival and
leaves the buffer in that exact same sequence (which
may not happen with a loading dock or a bus station).

