
DESIGN QUALITY USING THE OO PARADIGM

Leslie J. Waguespack, Jr. Ph.D.

Professor of Computer Information Systems

Bentley University

© 2 0 11 L . J . Wa g u e s p a c k , P h . D . , A l l R i g h t s R e s e r v e d
N o p o r t i o n o f t h i s d o c u m e n t m a y b e r e p l i c a t e d o r r e p r o d u c e d i n a n y f o r m

w i t h o u t t h e e x p r e s s w r i t t e n c o n s e n t o f t h e a u t h o r.

D E S I G N I N G A N D B U I L D I N G
T H R I V I N G S Y S T E M S

Project White Paper
November 29, 2011

Wa l t h a m , M a s s a c h u s e t t s 0 2 1 5 4 - 4 7 0 5 • t e l e p h o n e : 7 8 1 - 8 9 1 - 2 5 8 4 • 9 7 8 - 7 7 9 - 5 3 2 2 • LWa g u e s p a c k @ B e n t l e y. e d u

mailto:LWaguespack@Bentley.edu
mailto:LWaguespack@Bentley.edu

Design Quality Using the Object-Oriented Paradigm
An Architectural interpretation of quality design

We will never be able to absolutely define design quality because of the relativistic nature of satisfaction in the ob-
server experience. But, our students must still face design choices. So, as IS educators we must provide a framework
for them to develop and refine their individual perceptions and understanding of systems quality. The taxonomy of
design choice evaluation proposed in Waguespack (2008, 2010b), the 15 choice properties, is just such a framework.
(See Appendix A.) Choice properties derive from Christopher Alexander’s writings on design quality in physical
architecture. (Alexander 2002) This material is derived from (Waguespack 2011).

Choice properties address the process of building, the resulting structure, and the behavior of systems as cultural
artifacts. Every design decision, choice, contributes to the aggregate observer experience: either positively or nega-
tively. Each choice exhibits the 15 properties with varying strengths or influence that impact the resulting observer
satisfaction. The confluence of property strength results from the coincidence of the designer’s choice with the collec-
tive intention of the stakeholders. The combination of all choices with their respective property strengths results in
the overall, perceived design quality. Many of the properties are design characteristics long recognized in software
engineering (i.e. modularization, encapsulation, cohesion, etc.). But several reach beyond engineering to explain aes-
thetics, the art (i.e. correctness, transparency, user friendliness, elegance, etc.). An example of the effectiveness of
choice properties in explaining the design quality of production systems is reported in (Waguespack, Schiano & Yates
2010a).

The Ontology of the Object-Oriented Paradigm

Illustrating design decisions in the object-oriented paradigm can be a challenge. The idiosyncrasies of OO program-
ming syntax often obscure the intention and/or the result of a design decision. For that reason the learning unit pre-
sented here uses a paradigm description independent of programming language, the object-oriented ontology, found
in (Waguespack 2009) and excerpted in Appendix B. The graphical outline of the ontology is Figure 1 below.

 Figure 1 - The Object-Oriented Ontology

Object!
Oriented
Concepts

object

class

remembrance
property

progeny
property

encapsulation
property

variable
data attribute

method
behavioral attribute

service
behavioral attribute

value
data attribute

identity
property

membership IN
property

message passing
relationship association

relationship

inheritance
relationship

instance
relationship

polymorphism
relationship

membership OF
property

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

1

The object-oriented ontology is arranged as follows:

Individuals
Attributes

Data Attributes
Behavioral Attributes

Classes
Relationships

Structural Relationships
 Inheritance

Behavioral Relationships
 Association
 Message Passing
 Polymorphism

Individuals – The most concrete concept in the object-oriented paradigm is the object. It derives from the living
physical experience of humans seeing and touching things. In that experience objects are separable – distinguishable
from other objects by nature of their physical presence and location regardless of any other discernible characteristics
they may possess. This characteristic of “individual-ness“ leads to the property of identity. Identity enables the un-
ambiguous designation or selection of every object physical or abstract within a domain of discourse. Objects have an
“inside,” an “outside,” and a “surface” that separates the inside from the outside. An object contains anything that
exists on the “inside” of the object. Since the surface of most physical objects is opaque, usually the contents are in-
visible and untouchable by anyone on the outside. This property called encapsulation protects the object’s contents
from external meddling and encourages observers of the object to be indifferent to the details of its internals.

Attributes – Attributes are those characteristics that are inherent to an object. In the object paradigm attributes define
either data or behavioral characteristics - each of which has a static and dynamic form. Attributes in static form com-
bine to define what is called the structure of an object. From inception to extinction the structure of an object is immu-
table.

Data Attributes – Data attributes serve to store information (data) within an object and implement the property of
remembrance. Data attributes are completely contained within an object protected by encapsulation. Remembrance is
manifest statically as “what can be remembered,” a data attribute variable. It is manifest dynamically as a definition
of “what is remembered,” a particular data attribute value.

Behavioral Attributes – Behavioral attributes serve to define the animate nature of an object. In its static form each
behavioral attribute defines “what an object can do,” usually called a service. In its corresponding dynamic form this
behavioral attribute defines “how a service is accomplished,” usually called a method (or operation). Methods define
“activity” performed in an object model. A method may simply be access to remembrance inside an object or it may
be complex sometimes employing the involvement of other services of the same or other objects to accomplish its
responsibility. Methods reside within the object subject to encapsulation while services are visible at the surface of the
object available for collaboration.

Classes – The class concept combines both a definition of structure and the generation of object(s) based on that struc-
ture. Every object is an instance of a specific class and shares the same static structure defined by that class with every
other object of that class. The responsibility of generating instances that share the same structure is the property of
progeny. The class concept thereby fuses the existence of the objects to that of their class; objects cannot exist inde-
pendent of their defining class. Objects are said to be members of their class. Along with the static behavioral struc-

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

2

ture of service defined in the class, the dynamic behavioral attribute, method, may also be defined. Defined in the
class this dynamic behavioral attribute, “how a service is accomplished,” is identical for each and every object gener-
ated of that class.

Relationships – Relationships in the object paradigm exist on two dimensions: structural and behavioral.

Structural Relationships – The structural relationship is based primarily on the properties of identity, remembrance
and progeny.

Inheritance – Inheritance is a relationship between classes. The structure defined in one class is used as the founda-
tion of structure in another. By foundation it is meant that all the structure of the first is replicated in the second and
additional structure in terms of data attributes or services may be added or methods for replicated services may be
altered (overridden). The replicated structure defines how the two classes are alike. The additions or alterations de-
fine how they are different. The class defining all the structure shared between them is called the parent class (super
class, generalization) while the other is called the child class (sub class, specialization). It is said that the child class
proceeds from or is derived from the parent class. Successive application of inheritance defining related classes re-
sults in a class hierarchy.

Behavioral Relationships – The behavioral relationships are based primarily on the property of membership, IN, and
the capacity of objects to “act.”

Association – An association is a relationship between objects. Objects are intrinsically separable by way of the iden-
tity property. At the same time, humans are compelled to categorize their experience of things in the physical world.
Humans superimpose groupings that collect objects into sets (a foundation of mathematics based on human experi-
ence). Objects become members in a group only by designation. This property is called membership IN. Membership
is independent of identity or attribute. This property also permits humans to identify an object that is not in a set (i.e.
discrimination). (Membership IN a group is discretionary and is distinct from membership OF a class which is intrin-
sic by way of progeny.) Variations on membership derive from the intent of the relationship and generally fall into the
categories of association and composition. Any designated collection of objects defines a relationship between those
objects called association. By the simple fact that they are members in the same relationship that membership defines
how they relate. When the existence of the objects themselves is coupled with their membership; that is to say, if one
(or the other or both) would not exist if it were not related to the other then the relationship is called a composition.

Message Passing – Message passing is a relationship between objects. Message passing relies on the identity prop-
erty and services. A message is a communication between a sender object and receiver object where the sender re-
quests that the receiver render one of its services. The sender and receiver may be one in the same object. The mes-
sage designates the receiver’s identity, the receiver’s service to be performed along with any parameters that the serv-
ice’s protocol may require. Since the message is a request there are no implicit timing constraints determining when
the service is accomplished. Unless explicitly designated a message results in an asynchronous activity on the part of
the receiver without acknowledgment or returned information.

Polymorphism – Polymorphism results from the interplay of message passing, behavioral attributes and classes. A
sender directs a message to a receiver designating a service of that receiver. A message does not designate a method.
The regime that determines which method satisfies a service request is called binding. If the method (corresponding
to the service) is defined in the class of the receiver object, that method is invoked. If the service of the receiver’s class
is inherited (and not overridden), the corresponding method defined in the nearest progenitor (parent class) of the
receiving object’s class is invoked.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

3

Crafting object-oriented modeling choices that strengthen properties of design quality

This section, the heart of the learning unit, enumerates the 15 choice properties as defined in Waguespack (2010b)
illustrating how modeling choices in the object-oriented ontology can express design quality. In this space-limited
discussion one choice property often references another reflecting the confluent nature of the design quality proper-
ties as Alexander defines them in physical architecture. (Alexander 2002)

Table 1 - Choice Property Strength Through OO Modeling Actions

1. STEPWISE REFINEMENT reliant upon Cohesion, Encapsulation, Correctness and Identity incorporated in the
choice by the modeling action “to elaborate:”

Stepwise Refinement (as the name implies) is an approach to elaboration that presumes a problem should be ad-
dressed in stages. The stages may represent degrees of detail or an expanding problem scope. (Birrell and Ould 1988)
In either case quality evidence of stepwise refinement is demonstrated by the cogent and complete representation of a
design element at whatever level of detail or scope is set at each stage. To achieve this representation the modeling
paradigm must support abstraction that allows generalization of the scope of interest and then the elaboration of that
scope from one stage to the next.

The class concept in OO provides this capability. Through the inheritance relationship a class can represent the more
abstract, general character of a model feature while expressing all the information and behavior needed at that level

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

4

Choice
Property

Modeling
Action Action Rendition Through Object Modeling

1
Stepwise

Refinement
elaborate employing class inheritance to expose and elaborate responsibilities and

information management through levels of abstraction

2 Cohesion factor locating both service and data attributes for independent sufficiency

3 Encapsulation encapsulate delineate the responsibilities, knowledge, and interface of objects

4 Extensibility extend service abstractions that enable and control polymorphic extension

5 Modularization modularize individual and successive applications of encapsulation to compartmentalize
design decisions and abstract system structure

6 Correctness align self-validating object interfaces that implement verification behavior

7 Transparency expose structural & behavioral relationships the show “fit” and “cooperation”

8 Composition of
Function assemble design favoring simple parts combined for sophisticated function

9 Identity identify stakeholder visible constructs reflected in classes and relationships

10 Scale focus grouping objects & relationships in simplifying wrappers and facades

11
User

Friendliness
accommodate using user’s terminology and visible topology to maintain a familiarity that

invites users into validation and verification

12 Patterns pattern nurturing familiarity and empowering evolution through polymorphism

13 Programmability generalize predicting and enabling adaptation of behavior without construction

14 Reliability normalize clearly distinguishing essential elements derived from business rules from
artifacts necessary for technological compatibility or platform

15 Elegance coordinate satisfaction from an intuitively obvious design based not on having nothing
else to add, but rather having nothing else that can be left out

of abstraction: 1) what responsibilities the objects of this class fulfill, 2) what information they manage, and 3) what
services this class’s objects provide the rest of the model. As the modeling stages progress greater specialization is
achieved with child classes that redefine abstract behaviors: by adding data and/or behavioral attributes germane
only at a lower level of abstraction, or by defining collaborations to support this class’s responsibilities. Stepwise Re-
finement can mimic the concept of “need-to-know.” Only that detail required to “understand” the system at that ab-
straction level need be revealed or perhaps is not even chosen until the need arises. When the need does arise the
detail may be added within the genealogy of the class preserving the cohesion of a class’s defined functional respon-
sibility at the higher abstraction levels.

As an example, consider a class that defines items stored in an inventory. At the most general level the most impor-
tant functional detail is the entry and removal of items. As refinement progresses simple entry and removal may be
augmented by including item re-order and supplier interaction both concealed from the inventory item’s client who
sees only entry and removal. The supplier interaction details are encapsulated within the inventory item’s responsi-
bilities retaining the cohesion of the class’s purpose (its identity). And the description of the inventory item exhibits
correctness at either level of detail with and without the supplier interaction elaboration.

2. COHESION reliant upon Extensibility, Transparency, Identity, Scale, Programmability, Elegance incorporated
in the choice by the modeling action “to factor:”

Cohesion is a quality property reflecting a consistent responsibility distribution in a field of system components.
(Zuse 1997) Since every object “expects” the objects around it to fulfill their responsibilities to contribute to the whole
model, each object is in itself free to be single-minded in its focus on its own purpose. This is the result of well-chosen
classes. This independent sufficiency accentuates the divisibility of function in terms of each object’s individual pur-
pose, its identity, and the clarity with which its purpose is exposed to the rest of the community of objects in the sys-
tem. The single-mindedness that results also increases the feasibility of object interaction rearrangement enabling an
overall change in system function while almost every class’s individual purpose remains fixed. The independent suf-
ficiency of each object’s inner workings couples with the system-wide interdependency of object cooperation to pro-
mote a texture exhibiting a sense of system connectedness, elegance.

3. ENCAPSULATION reliant upon Cohesion, Extensibility, Transparency, Composition of Function, Identity, and
Scale incorporated in the choice by the modeling action “to encapsulate:”

Encapsulation is a design quality reflected directly in the nature of the object-oriented ontology as objects encapsulate
both their data and behavioral attributes. Encapsulation clearly delineates who is allowed to manipulate system in-
formation and who is not. Object data and behavior are only accessible (invoke-able) via the published services de-
fined for each object by its class. When sustained as a discipline this boundary universally designates the object as the
finest granule of modularization. (Scott 2006) This principle eliminates the possibility of “side effects” where system
state changes occur in any manner other than the “contractual” prescription defined in the object’s service interface.
The isolation of the inside of the object from the outside allows both to evolve without servitude to the implementa-
tion of the other (e.g. pursuing efficiency) as an object is obligated only through the published responsibilities in its
class’s services.

(Regrettably, encapsulation as an object-oriented property is often diluted in implementation as something with far
less integrity than it is defined here. Excused by arguments for efficiency or convenience access to object attributes by
means other than the contractual interface of services defined in the object’s class creates “back doors” that confound
testing and render composition of function hazardous.)

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

5

4. EXTENSIBILITY reliant upon Cohesion, Modularization, Correctness, Composition of Function, Identity and
Elegance incorporated in the choice by the modeling action “to render extendable:”

Extensibility is the property of design quality most important in pursuing systems with sustainability essential to cost
of ownership economy. This is the vehicle for seamless unfolding in system evolution. Extensibility juxtaposes the
potential for new functionality with the effort required to achieve it. (van Vliet 2008). In the object-oriented paradigm
class plays the pivotal role by empowering instance and inheritance relationships.

Multiplicity is achieved through instance propagation, progeny. Each instance is completely interoperable in any
combination with its sibling objects as well as acting as an instance of any ancestor class. Interchangeability both en-
ables and reinforces modularization.

Evolution or unfolding is accomplished as class definitions are refined and specialized in their child classes – the rela-
tionship called inheritance. When a child class extends the scope of the data and behavioral attributes of its parent it
honors the pattern set out in the parent without contradiction. Polymorphism compensates (through dynamic bind-
ing) for any overridden methods. This extension proceeds without any impairment of correctness because the inter-
faces defined in the parent class must be supported in each child class. The parent to child unfolding specializing
structure and behavior results in an unbroken thread that binds each class to its ancestry and projects an identity
down through the generations of class.

5. MODULARIZATION reliant upon Stepwise Refinement, Cohesion, Encapsulation, Correctness, Transparency,
Identity, User Friendliness and Programmability incorporated in the choice by the modeling action “to modular-
ize:”

Modularization along with cohesion expresses “divide and conquer” problem solving augmented by the flexibility of
configuring and reconfiguring objects as cooperating agents. Modularization also supports scale permitting the com-
position of subsystems of varying scope that hold details in abeyance until they require focus. (Baldwin and Clark
2000) Enlightened module design exposes the solution structure envisioned by the modeler and publishes intentions
for further extension by separation of concerns and isolation of accidents of implementation. (Brooks 1987) The OO
paradigm provides ample facility for defining modules of any size and scope while aggregating and/or nesting their
interfaces through deliberate information hiding. The granularity enabled through modularization may be applied to
facilitate the modeler’s formulation of structure as well as the perspective to aid stakeholder recognition and under-
standing.

6. CORRECTNESS reliant upon Stepwise Refinement, Cohesion, Modularization, Correctness, Composition of
Function, Scale, Patterns and Reliability incorporated in the choice by the modeling action “to align:”

Correctness in software engineering is often narrowly defined as computing the desired function. (Pollack 1982)
Thriving Systems Theory frames this property upon two outcomes: 1) validation, the clarity and fidelity of the repre-
sented understanding of system characteristics, and 2) verification, the completeness and effectiveness of model fea-
ture testing both individually and in composition.

Validation depends on the fidelity of the unfolding process; that through the stages of stepwise refinement the “es-
sence” of system characteristics are brought forward maintaining their integrity. (Brooks 1987) Modularization aids in
cataloging and focusing on individual essential characteristics. Correctness is the only choice property that directly
supports itself! Correctness must be a priority at each stage as experience shows that correctness shortcomings grow
more and more expensive to rehabilitate as evolution progresses – notice “rehabilitate,” to restore to normal life.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

6

Verification depends on the effective testability of each choice to certify it as “consistent with stakeholder understand-
ing.” Modularization enables the verification of individual choices or modules. Then relying on the correctness inside
modules verification can turn to the certification of behaviors resulting from composition of function. Experience
often leads to dependable patterns of classes or modules applicable or adaptable to recurring modeling tasks. Verifi-
cation in these situations can focus on known areas of fragility/risk limiting the effort required to reach a desired
confidence level of reliability.

7. TRANSPARENCY reliant upon Stepwise Refinement, Modularization, Identity and Programmability incorpo-
rated in the choice by the modeling action “to expose:”

Transparency is evident structure, revealing how things fit and work together. (Kaisler 2005) In the OO ontology “fit
together” and “work together” are defined by the structural and behavioral relationships. Individual objects may
represent clearly delineated and encapsulated choices, but their cooperation is defined by relationships.

Inheritance explains the structural relationship of classes through the propagation of data and behavioral attributes.
Inheritance not only propagates attributes, but also enables a class hierarchy’s capacity for exhibiting similarity and
difference between parent and child classes. That which is similar (in fact identical) inherited by the child class is as-
sumed and becomes in effect familiar – requiring no reiteration. This “folding” of that which is not changed avoids
clutter in the child class description, but may be readily reviewed in the parent.

The behavioral relationships of association, message passing, and polymorphism explain the predictable patterns of
communication and action. Association uses the property of identity to designate membership, ownership, and ac-
cessibility among objects. Message passing provides the mechanism for cooperating action between objects providing
a disciplined conduit through the encapsulating boundary of objects by using services to convey intention, informa-
tion, and reaction. Polymorphism allows the abstraction of intention by using the same service name to evoke distinct
behaviors from objects of different classes. The identical service names in classes with different methods directly real-
ize the metaphorical abstraction of object behavior where at one level of abstraction the behaviors are the same and at
a more detailed level of abstraction their behaviors are distinct.

8. COMPOSITION OF FUNCTION reliant upon Extensibility, Modularization, Identity and Programmability
incorporated in the choice by the modeling action “to assemble:”

Composition of Function - As a fundamental tool for managing complexity humans regularly attempt to decompose
problems, issues, or tasks into parts that either in themselves are sufficiently simple to permit direct solution or can
through recursion be subdivided successively until they become sufficiently simple. This is a defining aspect of
modularization. When the conception of a part also anticipates reuse then the part takes on a larger significance. The
combination of specifying a choice consistent with the essence of system characteristics and then designing the choice
as an interchangeable component in multiple super-ordinate choices is a step toward elegance. Reusable choices rep-
resent an understanding of the essence of the system at a deeper level than an individual application. They represent
awareness of the intention, perhaps even the philosophy of the system domain.

Composition of function as a property of design quality is realized in model features that facilitate the extension or
retargeting of the model in the future. It is the capacity to combine simple functions to build more complicated ones
(Meyer 1988). The retargeting capability may be provided directly to the users of the system in the form of a pro-
grammable interface. A choice achieving the principle of composition of function is marked not only by the function
it initially provides the user, but also by the functionality it anticipates and supports even (perhaps) before the stake-
holders realize the need for the capability.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

7

9. IDENTITY reliant upon Encapsulation, Modularization, Composition of Function, Scale, Programmability and
Elegance incorporated in the choice by the modeling action “to identify:”

Identity is at the root of recognition and is another property of design quality not usually defined in software engi-
neering. In the physical world identity is literal based upon direct sensorimotor experience: by sight or touch and in
some cases by sound or smell – a human experience of the “real” world. In the object-oriented paradigm identity is
an object property. (Khoshafian and Copeland 1986) Existence is sufficient for object identification.

In other paradigms identification is achieved through possessed characteristics (attributes) that contribute to distinct
recognition by a process of intersecting categorizations or the introduction of an artificial characteristic whose sole
purpose is to support discrimination. Aside from the fact that these approaches to identification require some over-
head (either mental or computational) they are simply not natural to humans. Humans perceive objects as possessing
characteristics rather than characteristics defining objects. The former begins with certain uniqueness and progresses
toward explanation while the latter begins with uncertainty and attempts to deduce uniqueness.

Characteristics are not unimportant. Classification is essential in most human problem solving activities. And recog-
nition is virtually always accelerated by the discrimination that categorizing characteristics (attributes) provide. And
most importantly in the absence of physical experience categorization through characteristics is the only choice. Class
structure and the instance relationship are vital to identity – an object belongs to “this” class and not to “another.”
Described both by what an object “knows” (data attributes) and what it “knows how to do” (behavioral attributes)
classes form a categorization cornerstone of the object-oriented ontology. But to model both the static and dynamic
dimensions of reality (association and message passing) each object must be uniquely distinguishable.

10. SCALE reliant upon Stepwise Refinement, Cohesion, Transparency, Identity, User Friendliness, Patterns and
Elegance incorporated in the choice by the modeling action “to focus:”

Scale’s affect on design quality is reflected in common idioms: “You can’t see the forest for the trees!” and “Let’s get a
view from 10,000 feet.” They reflect the importance of context in recognition and decision-making. Scale captures the
modeling imperative that all choices must be kept in perspective because it is not sufficient to consider a choice only
in the microcosm of itself, as it must also participate in the connectedness of the whole. By achieving scale, a system
designer provides differing granularities of comprehensibility to suit the requirements of a variety of observers (Wa-
guespack 2010).

The relationships provided in the object-oriented paradigm (association, inheritance, instance, message passing, and
even polymorphism) provide ample means for designing collections of cooperating choices that are nested, intersect,
or partition the full field of functionality essential to the model. These may be called variously subsystems, modules,
or sub-modules. In those cases where the actual structure of a collection must be rendered obscure, classes and ob-
jects can be devised to serve as facades or agents to “keep up appearances.” Coupled with stepwise refinement, as it
is, scale is used to focus modeler and stakeholder attention to achieve the contextual understanding needed to ad-
dress constituent concerns within the whole.

11. USER FRIENDLINESS reliant upon Cohesion, Modularization, Correctness, Scale, User Friendliness, Reliabil-
ity and Elegance incorporated in the choice by the modeling action “to accommodate:”

User Friendliness is another property of design quality more often considered aesthetic. It is a combination of: ease of
learning; high speed of user task performance; low user error rate; subjective user satisfaction; and, user retention
over time (Shneiderman 1992). Its impact may be easiest to consider in its absence. A modeling choice that is “un-
friendly” to stakeholders is confusing, hard to comprehend, unwieldy, and perhaps worst of all, of indeterminate

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

8

correctness. That which defies understanding cannot be determined to be correct. Satisfaction is cumulative. The sen-
sitivity to the stakeholders’ conceptions of the essence of the system to be modeled is key to the stakeholders’ sense of
comfort, familiarity, and expectation.

The object-oriented paradigm excels in its facility to represent systems characteristics in a way that preserves the
stakeholders’ ability to recognize “their” system. Authoring object-oriented models whose elements correspond al-
most one-to-one with the real-world concepts and entities results in intrinsically better stakeholder understanding
and interaction. The casting of “objects” in the models that have direct counterparts in the stakeholders’ experience
exhibits a fundamentally friendly quality. It respects the stakeholders’ perceptions and it welcomes them into the
processes of verification and validation that are intrinsic to correctness. The unified structure of “what an object
knows” and “what an object knows how to do” correlates so naturally with observers of business models or process
models that the natural clarity in that communication improves understanding and avoids mistakes in understand-
ing, communication, or implementation.

And in a serendipitous quirk of language (or a profound emergence of the deep meaning of metaphors) Alexander’s
term from which the principle here, user friendliness, is derived is roughness. (Alexander 2002) Something has to
have a certain degree of roughness if one is to be able to effectively grasp it!

12. PATTERNS reliant upon Stepwise Refinement, Correctness, Transparency, Scale, User Friendliness and Ele-
gance incorporated in the choice by the modeling action “to pattern:”

Patterns describe versatile templates to solve particular problems in many different situations (Gamma et al. 1995).
All entities in the object-oriented paradigm propagate from classes, predefined templates, or “cookie cutters.” This
protocol organizes what otherwise would be a bewildering multiplicity of individual computational entities to con-
sider. It becomes less complicated in the understanding that the potential of any number of objects boils down to un-
derstanding the class(s) of which they are instances. Each instance mimics perfectly the form and function of every
other of its siblings, members of that class. Class hierarchies, generations of parent-child class definitions, defining
“nearly the same” and “different in specific ways” relationships significantly lessen the apparent complexity that
considering only individual entities entails. Class hierarchies define the path of unfolding for all to see – a depiction
of the analysis, solution, and design philosophies at work.

Patterns is the property of design quality that channels change (unfolding). A pattern foreshadows where and how
change will need to be accounted for. Patterns of the form popularized in (Coplein, 1995) document commonly en-
countered design questions offering carefully considered advice and cautions. Their patterns are paradigm and mod-
eling language independent. However, it is not surprising that many examples using patterns are presented in OO
dialects. The reason is simple. The integration of instance, inheritance, message passing, and polymorphism relation-
ships is an ideal toolset for expressing patterns with a balance of prescription and adaptability – a balance not as con-
veniently achieved in dialects based on pre-object-oriented paradigms.

13. PROGRAMMABILITY reliant upon Stepwise Refinement, Encapsulation, Modularization, Transparency,
Identity and Reliability incorporated in the choice by the modeling action “to generalize:”

Programmability in software engineering is often considered a feature rather than a property of design quality – the
capability within hardware and software to change; to accept a new set of instructions that alter its behavior (Birrell
and Ould 1988). It is closely allied with extensibility and addresses the need for models to welcome the future. What
largely separates information systems from other human-made mechanisms is the degree of adaptability that they
offer to deal gracefully with change. Unlike most appliances that support a very narrow range of use (albeit with
great reliability), contemporary information systems are expected to provide not only amplification of effort as in
D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

9

computation, but also amplification of opportunity in terms of different approaches to business or organizational
questions. Contemporary information systems are expected to demonstrate that they can reliably accommodate
change. As with extensibility, successful accommodation of change relies on an understanding of the fundamental
options governing the structure and behavior within a particular domain. The OO ontology offers powerful tools
(structural and behavioral relationships, e.g. inheritance and polymorphism) to service the elements of change with-
out fracturing a skeletal foundation of base classes characterizing the domain.

What sets programmability apart from extensibility is a facility that permits altering the systems behavior without
having to reconstruct choices – that is to say that the system’s behavior can be sensitive to the context determined by
a “user” in “real time.” “Real time” is relative to the “user’s” role (e.g. developer or end user, etc.). This versatility is
not accidental but architectural. Choices may provide an interface language for end users that permits selections of
system actions to meet an immediate “real-time” need – an interface as simple as a light switch or as complex as a
natural language.

14. RELIABILITY reliant upon Transparency, Composition of Function, Patterns, Programmability, and Elegance
incorporated in the choice by the modeling action “to normalize:”

Reliability is a property of design quality more often associated with implementation than design. It is the assurance
that a product will perform its intended function for the required duration within a given environment (Pham 2000).
Objects facilitate modularized testing and quality assurance. A certified class produces certified objects (which is not
to say that certification is easy or inexpensive). As long as classes are protected from dynamic modification in de-
ployment there is no need to be concerned with the inner workings of their objects. As long as objects are truly encap-
sulated they conform to the intention of their class. In development testing proceeds incrementally as new classes are
added or rearranged in their collaboration. Once deployed testing is relegated to their interactions rather than their
definition. Testing is compartmentalized and does not explode exponentially when additional classes or functionality
within a class is added.

Reliability in design reflects an austerity that confines design elements to the essentials of the stakeholder’s inten-
tions. When design or implementation decisions involve additional constructs due to technology or compatibility,
these accidents of implementation must be clearly delineated so as not to imply that they are essence rather than ac-
cident. This clear distinction will protect future system evolution from mistaking accidental “baggage” as stakeholder
intentions.

15. ELEGANCE reliant upon Encapsulation, Modularization, Composition of Function, Scale, User Friendliness,
Programmability and Reliability incorporated in the choice by the modeling action “to coordinate:”

Elegance is perhaps the epitome of subjective quality assessment that clearly sets choice properties of design quality
apart from traditional software engineering metrics. “Pleasing grace and style in appearance or manner,” that’s how
the dictionary expresses the meaning of “elegance.” (Oxford English Dictionary)

 “A designer knows he has achieved perfection not when there is nothing left to add, but when there is nothing left to
take away.” (Raymond 1996)

Models composed of choices that are consistent, clear, concise, coherent, cogent, and transparently correct exude ele-
gance and nurture cooperation, constructive criticism and stakeholder community confidence. These are models that
confess to their own shortcomings because their clarity obscures nothing, even omissions. These are models that sat-
isfy stakeholders. They appear “intuitively obvious.” The clarity of their composite structure is so self-evident that
they seem “simple.” The use of the OO paradigm to construct a collection of “building blocks” in the form of a class

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

10

library to encapsulate architectural design decisions facilitates this impression of what is “intuitively obvious.” Using
well-conceived library elements becomes so second nature, so natural, that the builder perceives the blocks as the
natural primitives of construction rather than constructed artifacts.

Elegance largely proceeds from the efficient and effective representation of essential system characteristics along with
those features emerging out of design decisions, accidents of implementation, that are laid out with equal clarity for
separate consideration. This is the field effect of the beneficial, integrated, mutual support of strong choices described
in Thriving Systems Theory. (Waguespack 2010b)

Programming Languages vs. Ontology

The object-oriented ontology readily supports the fifteen properties of choices derived from Christopher Alexander’s
theory of wholeness and life. All the elements of system development distinguished by Fred Brooks’ as essence and
accidents of implementation can be realized efficiently and DISTINCTLY in the object-oriented paradigm. The isola-
tion of volatile requirements, technologies, interfaces etc. can be managed to eliminate as much as possible unin-
tended maintenance due to intermingling of requirement and design decisions. Object-oriented systems can directly
implement the separation of essence and accidents of implementation.

There is great diversity in the implementation of the object-oriented ontology by way of programming language.
Some languages render one or more of the elements of the object-oriented ontology in strict discipline while others
“adapt” the elements to their style or compatibility interests. Here are a few characteristic examples. Some languages
(called “object-based”) provide classes from which objects may be instantiated, but do not allow the definition of new
classes. Some languages permit child class to have multiple parent classes (multiple inheritance) while others only
permit (a less confusing) single parent class inheritance relationship. Some languages enforce encapsulation strictly
while others allow direct access to data attributes without an intervening method activation. Some languages pre-
sume that message passing is synchronous rather than asynchronous. Some languages require services that may
eventually be overridden to be prescribed as “override-able.” In most cases these “divergences” from the “pure”
object-oriented paradigm can be “worked around,” but to do so requires greater “mindset” discipline on the part of
the modeler.

There may be many variations of language features that will influence the representation of the properties described
here. The current generation of object-oriented dialects will surely be augmented by many to come. However, any
language implementation that supports the rubrics of the object-oriented ontology described here can facilitate the
effective incorporation of these fifteen properties.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

11

Bibliography

AACSB (2010). Eligibility Procedures and Accreditation Standard for Business Accreditation. Retrieved July 16, 2010
from http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf

Alexander C, (2002). The Nature of Order An Essay on the Art of Building and the Nature of the Universe: Book I -
The Phenomenon of Life, Berkeley, California: The Center for Environmental Structure, p. 119

Baldwin, C. Y., and Clark, K. B. (2000). Design Rules, Volume 1: The Power of Modularity. The MIT Press, Cambridge,
MA.

Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham W., Fowler M., Grenning J., Highsmith J., Hunt A.,
Jeffries R., Kern J., Marick B., Martin R.C., Mellor S., Schwaber K., Sutherland J., & Thomas D. (2010). Manifesto
for Agile Software Development. Retrieved July 12, 2010 from agilemanifesto.org

Birrell, N. D., and Ould, M. A. (1988). A Practical Handbook for Software Development. Cambridge University Press,
Cambridge, UK.

Brooks F. P. (1987), "No Silver Bullet: Essence and Accidents of Software Engineering," Computer, Vol. 20, No. 4, pp
10-19.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering (2ed). Addison-Wesley, Boston, MA.

Brooks, F. P. (2010). The Design of Design: Essays from as Computer Scientist. Addison-Wesley, Pearson Education,
Inc., Boston, MA.

Cassel L., Clements A., Davies G., Guzdial M., McCauley R., McGettrick A., Sloan B., Snyder L, Tymann P., & Weide
B.W., (2008). Computer Science Curriculum 2008 An Interim Revision of CS2001. Association of Computing
Machinery (ACM), & IEEE Computing Society (IEEE-CS)

Coplien J and Schmidt D (Eds) (1995). Pattern Languages of Program Design, Addison-Wesley, Reading, MA, USA

Crosby,P. B., (1979) Quality is Free, McGraw-Hill, New York, NY, USA.

Dijkstra, E. (1968). “GOTO Statement Considered Harmful.” Communications of the ACM, 11(3), 147-148

Diaz-Herrara, J.L., & Hilburn, Thomas B. (eds.) (2004). Software Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering, IEEE Computing Society (IEEE-CS), Association of
Computing Machinery (ACM)

Deming, W. E. (1993), The New Economics for Industry, Government, Education (2ed), Cambridge Press: MIT,
Cambridge, MA, USA

Denning, P. J. (2004). “The Great Principles of Computing,” Ubiquity, 4(48), 4–10

EQUIS (2010). EQUIS Standards and Criteria. Retrieved July 16, 2010 from http://www.efmd.org/attachments/
tmpl_1_art_041027xvpa_att_080404qois.pdf

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, MA.

Hoyle, D. (2009). ISO 9000 Quality Systems Handbook. Butterworth-Heinemann (Elsevier); 6 ed. Burlington, MA,
USA

ISO 9000 (2005), http://www.iso.org/iso/qmp

Juran, J. M., (1999). Quality Control Handbook (6ed), McGraw-Hill, New York, NY, USA

Kaisler, S. H. (2005). Software Paradigms. Wiley-Interscience, Hoboken, NJ.

Khoshafian, S. N., and Copeland, G. P. (1986). “Object identity,” Proceedings of ACM Conference on Object Oriented
Programming Systems Languages and Applications, Portland, OR, November 1986, 406-416.

Lunt, B.M., Ekstrom, J.J., Gorka, S., Hislop, G., Kamali, R., Lawson, E., LeBlanc, R., Miller, J., & Reichgelt, H. (eds.)
(2008). Information Technology 2008: Curriculum Guidelines for Undergraduate Degree Programs in
Information Technology, Association of Computing Machinery (ACM), IEEE Computing Society (IEEE-CS)

Meyer, B. (1988). Object-oriented Software Construction. Prentice Hall, New York, NY.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

12

http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.aacsb.edu/accreditation/AAACSB-STANDARDS-2010.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.efmd.org/attachments/tmpl_1_art_041027xvpa_att_080404qois.pdf
http://www.iso.org/iso/qmp
http://www.iso.org/iso/qmp

Pham, H. (2000). Software Reliability. Springer, Berlin, Germany.

Pollack, S. (Ed.). (1982). Studies in Computer Science. Mathematical Association of America, Washington, DC.

Raymond, E. S. (1996). The New Hacker's Dictionary, 3rd ed. The MIT Press, Cambridge, MA.

Sales and Supply of Goods Act 1994, Ch 35, Legislation of Her Majesty’s Government, The National Archives, UK,
http://www.legislation.gov.uk/ukpga/1994/35/introduction

Scott, M. L. (2006). Programming Language Pragmatics, 2nd ed. Morgan Kaufmann, Maryland Heights, MO.

Shackelford, R., Cross, J.H., Davies, G., Impagliazzo, J., Kamali, R., LeBlanc, R., Lunt, B., McGettrick, A., Sloan, R., &
Topi, H., (2005). Computing Curricula 2005: The Overview Report, Association for Computing Machiner (ACM),
The Association of Information Systems (AIS), The Computer Society (IEEE-CS)

Shneiderman, B. (1992). Designing the User Interface: Strategies for Effective Human-Computer Interaction, 2nd ed.
Addison-Wesley, Reading, MA.

Soldan, D., Hughes, J.L.A., Impagliazzo, J., McGettrick, A., Nelson, V.P., Srimani, K., & Theys, M.D. (eds.) (2004).
Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree programs in Computer
Engineering, IEEE Computer Society (IEEE-CS), Association for Computing Machinery (ACM)

Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K.M., Nunamaker, J.F. Jr., Sipior, J.C., & de Vreede, G.J. (eds.) (2010).
IS2010: Curriculum Guidelines for Undergraduate Degree Programs in Information Systems, Association for
Computing Machinery (ACM), Association for Information Systems (AIS)

Van Vliet, H. (2008). Software Engineering: Principles and Practice, 3rd ed. Wiley, Hoboken, NJ.

Waguespack, L. J. (2008). “Hammers, Nails, Windows, Doors and Teaching Great Design,” Information Systems
Education Journal, 6 (45). http://isedj.org/6/45/. ISSN: 1545-679X

Waguespack, L. J. (2009). “A Two-Page “OO Green Card” for Students and Teachers,” Information Systems Education
Journal, 7 (61). http://isedj.org/7/61/. ISSN: 1545-679X

Waguespack, L. J., Schiano, W. T., Yates, D. J. (2010a). “Translating Architectural Design Quality from the Physical
Domain to Information Systems,” Design Principles and Practices: An International Journal, 4, 179-194

Waguespack, L. J. (2010b). Thriving Systems Theory and Metaphor-Driven Modeling, Springer, London, U.K.

Waguespack, L. J. (2011). “A Design Quality Learning Unit in OO Modeling Bridging the Engineer and the Artist,”
In The Proceedings of ISECON 2011, v28 n1625 (Wilmington, NC): Design Quality with OO.pdf

Zuse, H. (1997). A Framework of Software Measurement. Walter de Gruyter, Berlin, Germany.

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

13

http://www.legislation.gov.uk/ukpga/1994/35/introduction
http://www.legislation.gov.uk/ukpga/1994/35/introduction
http://isedj.org/6/45/
http://isedj.org/6/45/
http://isedj.org/7/61/
http://isedj.org/7/61/
http://proc.isecon.org/2011/pdf/1625.pdf
http://proc.isecon.org/2011/pdf/1625.pdf
http://cis.bentley.edu/lwaguespack/Bentley_Site/Scholarship_files/Design%20Quality%20with%20OO.pdf
http://cis.bentley.edu/lwaguespack/Bentley_Site/Scholarship_files/Design%20Quality%20with%20OO.pdf

Appendix A – Choice Properties (Waguespack 2010b)

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

14

Choice
Property

Modeling
Action Practical Action Definition

1 Stepwise Refinement elaborate develop or present (a theory, policy or system) in detail

2 Cohesion factor express as a product of factors

3 Encapsulation encapsulate enclose the essential features of something succinctly by a
protective coating or membrane

4 Extensibility extend render something capable of expansion in scope, effect or
meaning

5 Modularization modularize employing or involving a module or modules as the basis of
design or construction

6 Correctness align put (things) into correct or appropriate relative positions

7 Transparency expose reveal the presence of (a quality or feeling)

8 Composition of
Function assemble fit together the separate component parts of (a machine or other

object)

9 Identity identify establish or indicate who or what (someone or something) is

10 Scale focus (of a person or their eyes) adapt to the prevailing level of light
[abstraction] and become able to see clearly

11 User Friendliness accommodate fit in with the wishes or needs of

12 Patterns pattern give a regular or intelligible form to

13 Programmability generalize make or become more widely or generally applicable

14 Reliability normalize make something more normal, which typically means conforming
to some regularity or rule

15 Elegance coordinate bring the different elements of (a complex activity or
organization) into a relationship that is efficient or harmonious

Appendix B - OO Green Card (Waguespack 2009)

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

15

D e s i g n Q u a l i t y u s i n g t h e O O p a r a d i g m! © 2 0 11 , L J Wa g u e s p a c k , J r. P h . D .

16

Along with the static behavioral structure of service defined in the class, the dynamic behavioral attribute, method, may
also be defined. Defined in the class this dynamic behavioral attribute, “how a service is accomplished,” is identical for each
and every object generated of that class.

4. Relationships

Relationships in the object paradigm exist on two dimensions: structural and behavioral.
The structural relationships are based primarily on the properties of identity, remembrance and
progeny.

4.1. Structural Relationships

4.1.1. Inheritance

Inheritance is a relationship between classes. The structure defined in one class
is used as the foundation of structure in another. By foundation it is meant that all
the structure of the first is replicated in the second and additional structure in terms
of data attributes or services may be added or methods for replicated services may
be altered (overridden). The replicated structure defines how the two classes are
alike. The additions or alterations define how they are different. The class defining
all the structure shared between them is called the parent class (super class, gener-
alization) while the other is called the child class (sub class, specialization). It is
said that the child class proceeds from or is derived from the parent class. Succes-
sive application of inheritance defining related classes results in a class hierarchy.

4.2. Behavioral Relationships

The behavioral relationships are based primarily on the property of membership
IN, and the capacity of objects to “act.”

4.2.1. Association

An association is a relationship between objects. Objects are intrinsically sepa-
rable by way of the identity property. At the same time, humans are compelled to
categorize their experience of things in the physical world. Humans superimpose
groupings that collect objects into sets (a foundation of mathematics based on hu-
man experience). Objects become members in a group only by designation. This
property is called membership. Membership is independent of identity or attribute.
This property also permits humans to identify an object that is not in a set (i.e. dis-
crimination). (Membership in a group is discretionary and is distinct from member-
ship of a class which is intrinsic by way of progeny.)

Variations on membership derive from the intent of the relationship and gener-
ally fall into the categories of association and composition. Any designated collec-
tion of objects defines a relationship between those objects called association. By the simple fact that they are members in
the same relationship that membership defines how they relate. When the existence of the objects themselves is coupled with
their membership; that is to say, if one (or the other or both) would not exist if it were not related to the other then the rela-
tionship is called a composition.

4.2.2. Message Passing

Message passing is a relationship between objects. Message passing relies on the identity property and services. A mes-
sage is a communication between a sender object and receiver object where the sender requests that the receiver render one
of its services. The sender and receiver may be one in the same object. The message designates the receiver’s identity, the
receiver’s service to be performed along with any parameters that the service’s protocol may require. Since the message is a
request there are no implicit timing constraints determining when the service is accomplished. Unless explicitly designated a
message results in an asynchronous activity on the part of the receiver without acknowledgment or returned information.

4.2.3. Polymorphism

Polymorphism results from the interplay of message passing, behavioral attributes and classes. A sender directs a mes-
sage to a receiver designating a service of that receiver. A message does not designate a method. The regime that determines
which method satisfies a service request is called binding. If the method (corresponding to the service) is defined in the class
of the receiver object, that method is invoked. If the service of the receiver’s class is inherited (and not overridden), the cor-
responding method defined in the nearest progenitor (parent class) of the receiving object’s class is invoked.

THE OBJECT-ORIENTATION “GREEN CARD”" SEPTEMBER 22, 2007

" ©2007, Les Waguespack, Ph.D." PAGE 2

Without syntax?

Every language that is invented
to express concepts carries with it
the understanding and the biases
of the inventor. Depending on
his/her purpose(s) those biases
simplify certain tasks performed
with the language but may ob-
scure the underlying concepts.

Programming language design
must deal with the feasibility of
automated translation and in-
teroperability with other pro-
gramming languages and operat-
ing systems. Compromises and
assumptions are chosen to make
the resulting language efficient,
effective and marketable.

The goal of this description of
the object-oriented paradigm is to
succinctly make the concepts un-
derstandable - an ambitious task
to say the least!

- Professor Waguespack

