Reprint not for distribution

Component-Based IS Architecture

Chapter in
Brown, Carol V. & Topi, Heikki (Eds.). 2003.
IS Management Handbook, 8th
Edition. Auerbach Publications, Boca Raton, FL.

Les Waguespack, Ph.D.
Professor
Bentley College Department of CIS
175 Forest Street
Waltham MA 02452
781-891-2584
Fax: 781-891-2949
Iwaguespack@bentley.edu

William T. Schiano, D.B.A.
Bentley College Professor of Electronic Commerce
Bentley College Department of CIS
175 Forest Street
Waltham MA 02452
781-891-2555
Fax: 781-891-2949
wschiano@bentley.edu

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

1.0 INTRODUCTION

A component is a building block of computer software systems. Modular construction has been
the standard of software architecture for decades. What makes components intriguing now is the
integration of technologies to support components, the use of components to compose business
applications rather than the underlying system software, and component deployment and
distribution over the Internet. These factors converge, leading to the prospect of shortened
application development time and increased application software quality.

Problem decomposition is a fundamental technique in systems analysis. Through the process of
decomposing the whole, we discover the units of information and function that must come
together to define and achieve the behavior of the whole. This guiding principle permeates
architecture and civil, electrical and electronic engineering. It is the same in software engineering
employed in the construction of computer-based information systems.

Component technology is an outgrowth of the object oriented paradigm of system modeling, and
it mirrors the technique of problem decomposition by encouraging system composition using a
collection of interacting, but independently constructed, parts. In this context, component takes
on the specialized meaning for which we use the term in this chapter.

This chapter discusses the definition, supporting technology, use, construction and economics of
components. Our goal is to explain how building components and building applications using
components differs from traditional software development practice. Components have the
potential to shorten application development time and overall development costs. To capitalize
on this potential, organizations must prepare their processes and personnel for component-based
application building. For the component-based approach to be cost effective, organizations must
identify requirements for componentization with a sufficiently broad internal or external market
for use and reuse. The supply and demand side issues interact in a complex economic viability
model, which extends beyond organizational boundaries.

2.0 DEFINING COMPONENTS

The industry has not yet settled on a universally accepted definition of component. In the
broadest sense, a component is an artifact of systems development manufactured explicitly for
the purpose of being used in the construction of multiple systems by multiple development
groups. This definition encompasses most knowledge or artifacts reused in system building. That
could range from documentation standards and templates to library subroutines and
programming languages. How a component is used is a better way to define it than how it is
built. What a component is depends on how it is used.

In this chapter, we focus on the role of components as building blocks in business applications —
business domain components. We choose this focus to exclude building blocks of systems
software, e.g. device drivers, graphics tool sets or database management packages. The

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution 3

stakeholders of system software components are hardware and operating system vendors whose
concern is platform efficiency and interoperability. The stakeholders of business domain
components are business users, managers, and systems analysts striving to satisfy requirements
driven by business processes, business markets, and government regulations. We use the term
component to mean business domain component for the rest of this chapter.

Component refers to an element of software that is clearly defined and separable from the
system. It interacts with the rest of the system through an explicitly defined interface. Except for
the interface, a user’s knowledge of the component’s internals is unnecessary for it to properly
function in the rest of the system. Recent advances in software system architecture have enabled
greater dispersion of components on networks and on the Internet and have therefore been
catalysts for independent component development and their interchangeable combination. A
component may be used in myriad system constructions.

Components marketed by out-of-house (third-party) producers are called off-the-shelf
components. If a system developer can locate and use an off-the-shelf component, the cost of
building a new, perhaps a one-time-only, solution for a particular requirement can be avoided.
Oft-the-shelf components arrive packaged, documented and tested; they pose a cost saving
alternative to developing new software for each new system requirement.

2.1 COMPONENTS BASED ON BUSINESS REQUIREMENTS

Application systems for a particular organizational function (or cross-functional process) often
share a variety of very similar computational requirements. Domain analysts recognize these
similar requirements as opportunities to define components. Architects can use components
during requirements analysis to frame an application domain. Components are stable
architectural primitives to be combined or arranged to suit a business procedure or process; and
then, when the procedure or process changes, to be rearranged quickly and easily without having
to revisit the component definition. Systems analysts can use components as a lexicon for
expressing individual application requirements. Designers can use components as predefined
parts around which to structure a system. Programmers can use components as tangible building
blocks to construct executable software.

At each step of software development a component represents an explicit understanding within
the application domain: what information is germane, what actions are relevant, how action is
triggered, and what consequence an action has. This constitutes a contract among the members of
the extended development team — the component is a stable, reliable, known quantity. Honoring
the component definitions and interfaces obviates understanding their inner workings.
Developers are free to ignore details other than those pertaining to business domain function to
the extent that the collection of components represents a complete lexicon of the application
domain. Application development becomes a construction set exercise.

2.2 COMPONENT ENABLING TECHNOLOGY

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

Today’s mainframe, desktop, portable, and handheld computers are more easily inter-connected
than ever before. Because this connectivity is virtually continuous, systems architects often think
of their systems as network-based or Internet based rather than computer-based. If a resource
exists anywhere on the network-based system, it is readily accessible by other computers on that
network. This distributed computing model is fertile ground for components. As an example, an
application designer may need some computation (e.g. credit card validation, decryption,
calendar arithmetic, format translation, etc.). If the designer can find a suitable service on the
network, engaging that service rather than programming it from scratch may result in cost
savings.

()
Appllcatlon /;;;;f;;//;;/;;;;f

Network// Internet
Connection

Iy

T

Component

Framework Component Framework

A A

\\\\\\\\\Z\\\\\\\

o w AR

Operating System Operating System

T T

B T T T
R T T T

s
P A A A A

Computer Host/Hardware Computer Host/Hardware

S Component / Application
D Component & Component Tap W Communication
Figure 1 — Component Architecture

The technology that enables components is the component framework. A component framework
is a combination of protocols and system software that resides on both the component server and
client computer (see Figure 1 above). They handle interface connection between an application
and a component. The component resides on the server computer. The application (component
user) resides on the client computer. They may be the same or different computers on a network.
The framework hides as many details about the component implementation, the host operating
system and hardware, and the network connection as possible. A component framework provides
a communication path between the application and component. Regardless of the surrounding
environment, the application can ignore how the component is implemented or even where it is
located and vice versa.

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

A component framework achieves component/application independence by providing a set of
component services relating to naming, event handling, transactions, persistence and security.
These services combine to provide a transaction processing environment. Component naming
services permit applications and components to identify and locate one another. Once they
establish communication they exchange information about their capabilities, services, and
information formats. Component event services enable applications and components to get each
other’s attention and synchronize actions. Transaction services define collections of application
activity that require all-or-nothing completion, regardless of local or remote component
interaction. Component persistence services allow components to perform database management
activities. Component security services, coupled with naming services, provide for client/server
authentication and control access to both information objects and component functionality. All
the services described herein are found to some degree in every component framework, but the
developer’s (or vendor’s) styles and approaches differ widely.

2.3 COMPONENT FRAMEWORK PRODUCTS

This section presents a brief survey of component frameworks. We choose these frameworks as
illustrative of the evolution of standards and product features over the last decade or so.
CORBA. Common Object Request Broker Architecture is a component framework standard
promulgated by the Object Management Group, OMG, a consortium of major computing
industry players. CORBA defines protocols, services, and an execution environment for
components. OMG does not market components or a component framework. It enforces the
CORBA standard and provides test suites to certify CORBA compliance. CORBA compliance
assures component producers, component framework producers, and their customers that
applications and components will interact reliably and consistently regardless of the vendor.
OMG aggressively solicits suggestions for extensions and improvements to the CORBA standard
and publishes a wide variety of supporting technical documentation and training materials. The
CORBA standard has been instrumental in enabling the cross-vendor, out-of-house component
market.

Microsoft ActiveX™. Microsoft has defined four standards along the way with a suite of
products it markets to support components. Microsoft’s industry clout has given these standards
some prominence. ActiveX™ predates Microsoft’s other component enabling tools. ActiveX™
uses a web browser on a client machine to download an ActiveX™ module. Once downloaded it
executes directly on the client’s underlying MS Windows™ machine. ActiveX™ might be
described as “just-in-time downloaded programs.”

Microsoft DCOM™, Distributed Component Object Model, DCOM™, is an inter-object
communications protocol designed to allow components on various nodes of a Microsoft
network to interact. It extends the functionality of the earlier standard, COM™, which provided
similar function, but on a single host computer. Tightly coupled with Microsoft’s operating
system product line, MS Windows™, COM™ and DCOM™ support a thriving market in

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

components for MS Windows™ applications including MS Office™, Visual Basic™, Visual C+
+™ and J++™,

Microsoft .NET™., Microsoft’s most recent offering is NET™, It extends DCOM™ adding a
robust component development and configuration environment. It provides application to
component connectivity, regardless of their location on a computer, a network, or the Internet.
The .NET™ product suite includes program editing, compiling, and debugging in an integrated
environment, Visual Studio™. Several NET™ compliant programming languages are available
to develop both applications and components.

Enterprise Java Beans™ and J2EE™. Another major player in component frameworks is Sun
Microsystems. With their invention of Java™, they pioneered the “just-in-time downloaded
programs” not only for web browsers on MS Windows, but for any web browser with a
compliant Java virtual machine, JVM. JVMs are available for most contemporary operating
systems with or without web browsers. Unlike ActiveX™, which is executable object code for
MS Windows™ based computers, Java compiles into machine independent byte-code. Byte-code
then executes interpretively on a JVM on the client machine. Java™, unlike ActiveX™, is both
machine and operating system independent and since it is interpreted, it does not pose the
security problems that downloaded executable object code presents. Java is a popular choice of
developers who need “program once” and “run anywhere” software. Sun Microsystems builds
upon their Java™ base with Enterprise Java Beans™ and J2EE™ that support a program editing,
compiling and debugging environment for Java™ based components.

J2EE™ and .NET™ represent the state of the art in Internet-enabled, distributed component
architecture technology. Each represents the evolution of component support from simply
enabling components to connect and communicate, to an insulating enclosure of development,
communication, database, and process management services that thoroughly enables (enforces) a
model of scalable, distributed enterprise computing.

3.0 BUILDING APPLICATIONS USING COMPONENTS

Building applications using components differs from traditional application software
development practice where programmers build information systems composed of tailor-made,
one-of-a-kind, built-from-scratch programs. Effective use of components to build a new system
requires a development process that is component aware. Component awareness refers to an
approach in which a high value (within the organization) is placed on using components rather
than building software from scratch, for 1) identifying recurring requirements suitable for
component solutions and 2) streamlining processes to make component use efficient. Regardless
of the specific steps, or the specific sequence, in the software process, each step requires
component awareness. Either all the personnel involved in the application building process must
become individually component aware, or specific personnel are assigned to oversee the use of
components, or a combination of both.

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

In a component aware software process, requirements analysis identifies units of required
functionality that are likely to be available as off-the-shelf components. Systems designers are
familiar with the catalog of available off-the-shelf components relevant to their application
domain. Programmers are familiar with the component framework environment that the
components will plug into. Programmers are able to configure their non-component system
pieces to interoperate with that environment as well. Component aware projects present a new
level of challenge for configuration managers. Warranty, availability, licensing, liability,
maintainability, and serviceability are all familiar issues with outsourced software or services.
The configuration manager’s task is, however, sorely compounded when applications and/or
systems include dozens or even hundreds of components.

Each component considered, whether it is used in a project or not, exacts a cost. At a minimum,
there is the cost of learning enough about the component to determine whether it is useful or not
and, then, whether it is feasible to use it or not. The checklist below is representative of the
information needed to consider a component for use in a particular development project. The
questions show a progression of detailed knowledge needed as the project edges closer to
actually using a component.

Table 1: Component Reusability Assessment Checklist

* What does it do?
o Is it designed for our application domain or do we have to adapt it?
o Does it support application domain functionality standards, ISO, FASB, IRS,
FDA, etc.?
Who provides it?
o Does it come from in-house or a third party?
o What form of warranty/guarantee does the provider offer?
o s the provider organizationally stable/reliable?
o Does the provider offer configuration support services/consulting?
What are its environmental requirements?
o Does it require a specific component framework environment (e.g. CORBA™,
DCOM™, J2EE™, NET™, etc.)?
o Does it require a specific configuration tool environment (e.g. Visual Studio™,
Java Beans™, etc.)?
o Does it require specific programming language expertise (e.g. C++, Java™,
VB™_ etc.)?
o Is it compatible with other components we may be considering for use with it?
How is it used?
o Is it configurable (i.e. parameters, extension points, variable through inheritance,
etc.)?
o Does it generate source code requiring translation and/or linkage?

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

o Does it run autonomously as a service accessed dynamically via a network/
Internet?

O Are there multiple versions of the component and which is the one best for this
project?

Finding candidate components and then learning the answers to these questions may represent a
significant expense. To maximize the return on investment, an organization should establish its
own internal catalog of the components it has examined, where they have been used, who used
them, and what has been learned about them to date. The internal catalog serves as the first point
of search when future component requirements arise. It is worth noting that the internal catalog
will likely contain a great deal of information about components that have not yet, and may
never, be used.

To control the costs of finding components and assessing their potential for any given
requirement, the system’s project tasks and software development life cycle need to include an
explicit component information collection and management activity. These changes in
organizational practice are not confined to a small group of workers, but should be widely
integrated into the organization’s practices. Such a broad integration relies on a strong
management commitment and a disciplined project management approach. It is likely that
organizations that are only casual followers of formal software engineering practices will find the
task of formally maintaining a component aware organization very difficult.

4.0 BUILDING COMPONENTS

Just as there are organizational challenges to becoming an effective consumer of components,
there are many challenges to becoming an effective producer of components. Components are
intrinsically different from application software. Unlike software written as a part of a larger
product, components are intended to stand alone as products themselves. They require their own
life cycle management, testing, documentation and support. If they are destined for consumers
outside the producer’s organization, they require more sophisticated documentation, examples
using them, user guides and customer support.

Choosing which component enabling technologies to use is another challenge to component
producers. (See Component Enabling Technology earlier in this chapter.) By analogy, should we
build a toy car part using LEGO® bricks or Tinker Toys™? The choice affects not only the pool
of potential consumers and the production costs, but also has architectural and compatibility
implications on the component’s longevity.

An even more difficult set of choices is the selection of candidate functionality for prospective
components. As we discussed in the Defining Components section earlier in this chapter, there
are few limitations on what can be conceived of or defined as a component: a component is an
artifact of systems development manufactured explicitly for the purpose of being used in the

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution

construction of multiple systems by multiple development groups. Which components should be
built? Should we build them? Intuitively, a component should have a high probability of being
used and reused — that is, high reusability.

Component reusability results from three characteristics briefly described below: utility, capacity
and versatility.

Utility — a component’s function must be relevant to a problem domain. It is common to find
components that support a particular genre of system functionality (e.g. GUI services: windows,
menus, dialog boxes). It is less common to find components that are application domain focused
(e.g. account, client, policy, contract, agreement, etc.). Therefore, the degree of utility depends
upon the domain of functionality that is a consumer’s focus. The greater the utility — then the
greater is the reusability. (The component does something valuable.)

Capacity — a component’s function must be sophisticated enough such that using the component
is clearly advantageous compared to build-from-scratch development. Searching, finding,
learning, and then using a component is a labor intensive effort. It would seem that good
component candidates would have some degree of complexity in their functionality along with
the testing that would certify reliable and, perhaps, efficient performance. The greater the
capacity — then the greater is the reusability. (What the component does is difficult to build-from-
scratch.)

Versatility — a component’s implementation must permit convenient integration into a target
application’s structure. Unless a component can be applied in a host application “as is,” some
configuration or adaptation is required for one, the other, or both. Adaptations become the
maintenance and support responsibility of the component consumer, and these costs may
outweigh the reusability benefits of the component. In the extreme, “It may be more trouble than
it’s worth!” The greater the versatility — then the greater is the reusability. (Although the
component doesn’t do exactly what is needed or how it is needed, it is easy enough to adapt for
the need at hand.)

An organization’s success in achieving reusability depends heavily on the producer’s
understanding of the consumer’s problem domain. Utility depends on the problem domain
almost exclusively. Capacity depends on an understanding of the architectural nature of the
problem domain — which requirements are permanent and which requirements are evolving.
Permanent requirements would seem to present component candidates with greater longevity
potential. Versatility is strongly influenced by the choice of implementation technology and the
degree of variability that a particular component must support — as in the case of evolutionary
requirements.

Reusability forms a basis for a cost / benefit analysis to guide the selection of requirement
candidates to implement as components. When the producer is also the consumer, an activity
called domain analysis needs to be performed. In domain analysis, the component producer

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution 10

attempts to construct a model that abstracts the requirements of prospective consumers of the
component in an attempt to identify shared functionality requirements.

In the final analysis, it boils down to questions of economics: the consumer asks, “Does building
systems using components increase or decrease the system life cycle costs?”” And the producer
asks, “Does the economic return on components produced justify the cost of building them?”
These questions are explored in the following section.

5.0 MAKING COMPONENTS COST EFFECTIVE

Components may streamline systems, but using them increases the complexity of the
development process. Whether an organization is exclusively a consumer of components, a
builder of components, or both, all aspects of their software development lifecycle are affected.

5.1 COMPONENT CONSUMER ISSUES

Let us first consider the component consumer and, for the sake of discussion, assume that useful
components are readily available. Project management of component-based initiatives involves
new challenges. Projects need to integrate a component culture throughout the software
development life cycle in requirements specification, design, programming, testing and
maintenance. A third party may control the life cycle of some of a project’s components.

In requirements specification, the scope becomes broader, as developers need familiarity with
not only their requirements, but also what components are available and the interoperability
frameworks on which they depend. Components may work with one framework but not another.

In design, developers must choose whether to adapt the design to accommodate an off-the-shelf
component, develop software to adapt the component to the requirement at hand, or forego the
use of a component and just write code. Developing software to adapt the component may not be
cost effective for a single instance, but if the component is useful in other, sufficiently numerous,
circumstances, the adaptation cost may be justified. Such a judgment requires thorough
knowledge of the requirements gained through domain analysis, which itself represents a new
discipline for many, and will require learning.

Maintenance becomes more involved because of the myriad interactions. Requirements may
change in one instance of component use, but not in others. A change in one component may
require changes in interfaces to software modules and/or other components and the resulting
testing. Components need to be certified reliable and efficient to save a consumer’s effort.
Component providers need to demonstrate that they or a third party have certified the
component. Unless the consumer can trust the component’s reliability, the consumer must
perform certification. When components are certified, testing is limited to how they are
configured and integrated and excludes their inner workings.

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution 11

For the sake of our discussion above, we assumed components were readily available. However,
components may not be readily available for many development projects—from either producers
or external vendors.

5.2 COMPONENT PRODUCER ISSUES

Component producers must decide which components to produce. Producers need domain
analysis to assess a component’s efficacy. Rather than satisfying a requirement from a single
consumer’s perspective, the component producer attempts to divine a utility with the prospect of
repeated use by, perhaps, several consumers in many similar requirement situations. Choices
must be made about the level of granularity and interoperability.

Specialized components with complex functionality may limit the number of potential
consumers. Fewer consumers across which to amortize the development cost means higher per
consumer cost to acquire a component. Higher component acquisition cost eats into the potential
life cycle savings of choosing a component over build-from-scratch, and so on. Component
function granularity is a delicate design parameter for the component producer.

Consumer access to a component depends on which interoperability framework the producer
chooses for it. The producer must follow the framework market and assess not only the current
capabilities, but also the future capabilities that each framework vendor may be contemplating.
These decisions must be revisited each time a component is revised or upgraded.

The testing task of component producers is difficult. Although components may have compact
and well-defined interfaces, testing must be extremely thorough and perfectly consistent with the
component documentation. A major determinant in the component consumer’s adoption decision
lies in the prospect of cost savings attributable to the component’s reliability. From the
developer’s perspective this is a major challenge since testing must often occur independent of
the eventual installation. Although not commonplace at this writing, third party certification of
compatibility and reliability of components is inevitable as the component market evolves.

Documentation extends to configuration and to the domain, which increases the scope and
expense of the documentation process. The wider the range of users of the documentation, the
greater the importance and the required sophistication of the documentation. Components must
be cataloged in a way that enables consumers to find and evaluate them.

5.3 SHARED PRODUCER / CONSUMER ISSUES

To achieve a significantly reduced time-to-market, a great deal of development must take place
in parallel, requiring coordination among groups. While a component-based project may produce
fewer lines of original programming, it must address an expanded number of management issues.
Reducing the effort expended in traditional development with component reuse requires

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

Reprint not for distribution 12

disciplined and effective management of the development, selection and use of components. Key
to that is cost accounting.

Cost accounting is difficult for all IS organizations, and many ignore it or use only rough
heuristics. Component reuse introduces additional project costs, including warehousing, delivery
and use costs. Those costs affect each project that uses the component and raise the required
initial investment. Any cost savings from reuse accrues back to the component.

From the purchase of packaged software through full service outsourcing of entire departments,
outsourcing is a routine part of many IS organizations. Similarly, when deciding whether to build
or buy components, management must determine if the savings from reuse will exceed the
incremental cost of obtaining a reusable component. Typically, savings occur only when a
component is reused several times. These reuses often occur over several years, introducing
significant time value of money issues. In order to be cost effective, organizations must obtain
reusable components that maximize the opportunity for repeated instances of reuse and limit the
need for writing code.

If the organization finds that acquiring a component is the best option, it must still choose where
to buy it. Vendor selection processes involve significant investment on the part of the purchasing
organization, and the selling organization. The benefits of such screening are well established,
but it is also important to make sure that the costs of the evaluation process do not become too
high in the case of inexpensive components.

There are several viable pricing models for components. Components can be sold to outside
consumers, who can then incorporate them into their own systems. They can also be licensed
under a variety of terms including time period, volume, per application and per execution. Given
that components can run on remote servers owned by the developer, licensing based on usage
may become more common.

6.0 CONCLUSION

Components encompass many widely accepted traditional software engineering principles
implemented with new technologies. The emergence of the standards and frameworks described
in this chapter, along with the support of OMG, reflect the increasing maturity of the process of
component development and use. The markets for components have been much slower to evolve.
While there are many valuable generic components available, domain-specific components
remain in short supply. Until more organizations start to use components, most domain-specific
markets will be too small to support third-party development. Organizations considering wide-
scale implementation of components will likely need to develop some components in-house.

Waguespack, Leslie J. Jr., with William T. Schiano, Component-Based IS Architecture, In IS Management
Handbook, 8" Edition, Chapter 42, Auerbach, pp. 531-543, 2003.

