Copyright and References

The arrangement, presentation, original illustrations and organization of the materials are copyrighted by Leslie J. Waguespack, Ph.D. with all rights reserved (©2013). Derivations and excerpts of additional materials are referenced as follows:

- Writing Effective Use Cases, Cockburn, Addison-Wesley, Boston, MA, ISBN 0-201-70225-8
- Object Oriented Systems Engineering, Waguespack, course notes CS390, CS460, CS630, CS771, Computer Information Systems Department, Bentley College, Waltham, MA.
Agenda

* Overview
 * Course Description
 * UML 2.x Certification

* Modeling
 * Identification, Description, Explanation, Communication
 * Scope and Focus

* Object Modeling

* Complexity Management
0. Overview

- Object-Oriented Modeling is based on a system of concepts that define the existence and relationships of facts within a defined system boundary.
- The system of concepts is called the Object-Oriented Paradigm.
- OOM is independent of UML or any other OO language: C++, Java, Smalltalk, C#, ...
- The Object-Oriented Paradigm is stable, well understood and documented.
- UML is an evolving, growing tool attempting to address a growing and evolving industry of system development.
This course introduces the object oriented paradigm as a basis for the standard documentation syntax of the Unified Modeling Language, UML, commensurate with the fundamental level of OMG UML certification. The course assumes no prior formal knowledge of the object oriented paradigm, UML or programming. Students will learn through course texts, lecture material, in-class and out-of-class object modeling exercises both individually and in groups. The primary focus is on the principles of object oriented modeling as documented in standard UML syntax. Students who successfully complete the course are skilled in the most commonly used elements of UML and able to develop basic object models. Student evaluation is accomplish through critical analysis of student modeling projects and continuous monitoring of learning in class. The course consists of five classroom sessions of four hours each.
Object Modeling with UML 2.x

Objectives

- Understanding the Object-Oriented Paradigm as a basis for documenting systems in UML 2.x
- Knowledge of UML syntax commensurate with fundamental level of OMG UML 2.x certification
- Skill in developing basic object-oriented models using UML 2

Pedagogy

- Reading the course text: UML Distilled, 3rd, Fowler
- Lectures on Theory and Practice of OOM and UML syntax
- In class exercises in OOM with UML
- Post-Course re-reading and individual study for the UML 2 fundamental certification exam
There are three OCUP Exams - Fundamental, Intermediate and Advanced. Each Exam tests your knowledge of a different subset of the UML.

Follow the links below for detailed coverage maps on each Exam:

FUNDAMENTAL

With this level of knowledge, and a corresponding amount of industry experience, a UML Modeler holding the OCUP Fundamental Level Certification can be a productive member of an analysis and design team. The OCUP Fundamental Examination covers the most commonly encountered UML elements. Familiarity with these elements allows a user to read, interpret, construct and work with simple UML models.

INTERMEDIATE

With this level of knowledge and expertise, and a corresponding amount of industry experience, a UML Modeler holding the OCUP Intermediate Level Certification could be an acknowledged senior member or supervisor of an analysis and design team. The OCUP Intermediate Examination covers a broad range of UML elements. Familiarity with these elements allows a user to read, interpret, construct, and work with fairly complex UML models.

ADVANCED

With this level of knowledge and expertise, and a corresponding amount of industry experience, a UML Modeler holding the OCUP Advanced Level Certification could serve as technical director of a department modeling large integrated applications, including complex behavior, and could advise senior management on the role of modeling in an enterprise architecture. The OCUP Advanced Examination covers the full range of UML elements. Familiarity with these elements allows a user to read, interpret, construct, and work with extremely large and complex UML models of an application’s structure and behavior.

Note that each level has its own examination, testing progressively more advanced concepts and usage of the UML 2.x Specification. All three exams cover the Superstructure; the Advanced exam also covers the Infrastructure. The maintenance updates that yield the point releases 2.1, 2.2, and the forthcoming 2.3 did not modify the language enough to affect examination coverage, so you will be well-prepared regardless of the point version you are familiar with.
The OCUP Fundamental Examination covers the most commonly encountered UML elements. Familiarity with these elements allows a user to read, interpret, construct and work with simple UML models.

Exam Number: OMG-OCUP-100
Duration: .. 90 minutes (80 questions)
Minimum Passing Score: 46
Exam Fee: .. US$200 (or equivalent in local currency)
Prerequisite: None

Below is a Coverage Map showing which sections of UML are on the Fundamental Exam. Chapter and Figure citations correspond to the UML 2.X specification.

UML Versions Covered: The OCUP examinations test knowledge of OMG’s UML 2.X specification. All three exams cover the Superstructure; the Advanced exam also covers the Infrastructure. The maintenance updates that produced the point releases 2.1, 2.2, ... did not modify the language enough to affect examination coverage so you will be well-prepared regardless of the point version you are familiar with. You can download the UML specification document for free. To download the current version, look [here](https://www.omg.org/uml-certification/Fundamental.htm) under “current version”. On that page, look past the Infrastructure links to the Superstructure before you click to download.

COVERAGE TABLE - FUNDAMENTAL

<table>
<thead>
<tr>
<th>Diagram Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Diagrams (Basic)</td>
<td>30%</td>
</tr>
<tr>
<td>Activity diagrams (Basic)</td>
<td>20%</td>
</tr>
<tr>
<td>Interaction Diagrams (Basic)</td>
<td>20%</td>
</tr>
<tr>
<td>Use Case Diagrams (Basic)</td>
<td>20%</td>
</tr>
<tr>
<td>Miscellaneous basic notions</td>
<td>10%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
OnLine UML Resources

* OMG - UML 2.x Superstructure
 * http://www.omg.org/cgi-bin/doc?formal

* Borland - tutorial
 * http://dn.codegear.com/article/31863
1. Modeling

Modeling is the process of identifying facts and describing them by characterizing their identity and their (inter-)relationships to form an understanding; and then communicating that knowledge to others by explaining the relevance and workings of the system of concepts under study.
System Analysis and Modeling

- Identification
- Communication
- Description
- Explanation
overview

* Systems analysis is the process of understanding and acting upon that understanding
 * identification
 * description
 * explanation
 * communication

* Understanding is constructed from experience and analysis
 * abstraction
 * terminology
 * context
 * responsibility
 * clarity
 * fidelity

* The most effective tool for building understanding is the **MODEL**
model

* n 1: a simplified description of a complex entity or process; "the computer program was based on a model of the circulatory and respiratory systems" [syn: theoretical account, framework] 2: a type of product; "his car was an old model" 3: a person who poses for a photographer or painter or sculptor; "the president didn't have time to be a model so the artist worked from photos" [syn: poser] 4: representation of something (sometimes on a smaller scale) [syn: simulation] 5: something to be imitated; "an exemplar of success"; "a model of clarity"; "he is the very model of a modern major general" [syn: exemplar, example, good example] 6: someone worthy of imitation; "every child needs a role model" [syn: role model] 7: a representative form or pattern; "I profited from his example" [syn: example] 8: a woman who wears clothes to display fashions; "she was too fat to be a mannequin" [syn: mannequin, manikin, mannikin, manakin, fashion model] 9: the act of representing something (usually on a smaller scale) [syn: modelling, modeling]

* v 1: plan or create according to a model or models [syn: pattern] 2: form in clay, wax, etc; "model a head with clay" [syn: mold, mould] 3: assume a posture as for artistic purposes; "We don't know the woman who posed for Leonardo so often" [syn: pose, sit, posture] 4: display (clothes) as a mannequin; "model the latest fashion" 5: create a representation or model of; "The pilots are trained in conditions simulating high-altitude flights" [syn: simulate] 6: construct a model of; "model an airplane" [syn: mock up]
What modelers try to do...

* identify as many characteristics of modeling as possible using the exercises with the tinker toys above...

* domain knowledge
 * experience
 * history
 * exploration
 * vocabulary
 * quality control

* communication
 * medium
 * written
 * oral
 * accuracy
 * perspective
 * quality control
 * clarity
 * terminology
 * consistency
 * relevance
How modelers prepare to do it...

- domain knowledge
- experience
 - history - formal education, work experience
 - exploration - experimentation, research
 - vocabulary - terminology, paradigms, methodologies
 - quality control - testing, work reviews, client interaction

- communication
 - medium - analysts spend most of their time communicating
 - written - documentation becomes long term memory, resource, knowledge asset
 - oral - builds confidence and trust between analysts and with client

- accuracy
 - perspective - "who is right?" often depends upon the viewing angle
 - quality control - "Assuming only makes an A__ out of You and Me!"

- clarity
 - terminology - we all need to speak the same language, maybe a new one for us!
 - consistency - the parts need to fit from every angle, over and over again
 - relevance - the world is a big place, how much of it is needed in this problem?
Scope & Focus

* “Seeing the forest for the Trees”
* “Showing the forest for the Trees”
Business Model

Business Process Model

Software Models

Professional operations

Computerized operations

THE BUSINESS

Traditional Computer Information System Development Path

systems analyst

business visionary

business process reengineer

business process modeler

systems professional

system specification
Modeling and Reengineering Informed by Experience

Business Model

Business Process Model

Software Models

business visionary

business process modeler

systems analyst

software developer

business reengineer

systems professional

system specification

business process reengineer

professional operations

computerized operations

the Business
Model Driven Architecture
Enhanced Development Path

Business Model

business visionary

Business Process Model

business process modeler

UML Object Model

object modeler

design patterns

software developer

professional operations

computerized operations

the Business

model compiler

formal OO specification
Keys to Clear Communication

* Shared vocabulary
* Shared objectives
* Shared tools for abstraction
* Consistent construction and maintenance of context
 * Shared SCOPE !!!!
 * Shared FOCUS !!!!
2. Object Modeling

* Object Modeling is a description and analysis tool based upon the object paradigm.

* Modeling at its core is Analysis, a detailed examination of the elements and structure of something.

* The object paradigm defines the characteristics and relationships that may exist and provides a network of conceptual primitives that permit a precise description of a system: components, composites and behavior.
Object Oriented Analysis

As described in Object-Oriented Analysis 2nd edition by Coad and Yourdan, Prentice-Hall, 1991

- Analysis is the precise documentation of the problem domain and the system responsibilities to satisfy user requirements
 - Problem: a question proposed for solution or consideration
 - Domain: sphere or field of activity or influence

- Problem Domain: field of endeavor under consideration
 - System: arrangement of things so related or connected as to form a unity or organic whole
 - Responsibility: condition of being responsible, answerable, accountable, or liable, as for person trust, office or debt

- System Responsibilities: An arrangement of things accountable for, related together as a whole.
Complexity

* Managing it with ...
 * Abstraction
 * procedural
 * data
 * Encapsulation
 * Inheritance
 * Association
 * Communication with Messages
 * Pervading methods of organization
 * objects and attributes
 * whole and parts
 * classes and members, and distinguishing between them
 * Scale
 * Categories of behavior
 * immediate causation
 * change over time
 * similarity of functions
Abstraction

- **Abstraction**: the principle of ignoring those aspects of a subject that are not relevant to the current purpose in order to concentrate more fully on those that are. (Oxford, 1986).

- When we use abstraction, we admit that what we are considering is complex; rather than try to comprehend the entire thing, we select parts of it.

- **Procedural abstraction**: the principle that any operation that achieves a well-defined effect can be treated by its users as a single entity, despite the fact that the operation may actually be achieved by some sequence of lower-level operations (ibid).

- **Data abstraction**: the principle of defining a data type in terms of the operations that apply to objects of the type, with the constraint that the values of such objects can be modified and observed only by the use of the operations. (ibid)
Encapsulation

- **Encapsulation (information hiding):** a principle, used when developing an overall program structure, that each component of a program should encapsulate or hide a single design decision.... The interface to each module is defined in such a way as to reveal as little as possible about its inner workings. (Oxford, 1986)

- If an analyst encapsulates the parts of the analysis effort that are the most volatile, then the (inevitable) changing of requirements becomes less of a threat to the overall effort.

- Localizing volatility is essential.
Inheritance

- **Inheritance**: a mechanism for expressing similarity among Classes, simplifying definition of Classes similar to one (or more) specialization, making common Attributes and Services explicit within the Class hierarchy or lattice.

- This principle forms the basis for a significant technique of explicit expression of commonality.

- Research indicates that this may be the core biological mechanism underlying memory and cognition.
Association

- **Association**: the union or connection of ideas
 - Used to tie together things or events that happen at the same time or under the same circumstances
 - Used to denote that one element of a problem is affected (or aware) of another
Communication with Messages

- **Message**: any communication, written or oral, sent between

- Message interaction corresponds to the imperative mood and present imperative tense of verbs in languages. "The imperative mood conveys commands or requests..." [Britannica, "Imperative mood," 1986]
Pervading methods of organization

- **Objects and Attributes**: the differentiation of experience into particular objects and their attributes (identity and description) -
 - e.g., when they distinguish between one tree and another, and between its size or spatial relationship to other objects.

- **Whole and parts**: the distinction between whole structures and their component parts -
 - e.g., when they contrast a tree with its component branches or distinguish a single tree within a forest.

- **Classes and Members**: the formation of and distinction between different classes of objects (likeness and difference) -
 - e.g., when they form the class of all trees and the classes of all stones and distinguish between members of each class.
Scale

* **Scale**: a principle that applies the whole-part principle to help an observer relate to something very large – without being overwhelmed.

* "When the proportions of architectural composition are applied to a particular building, the two-termed relationship of the parts to the whole must be harmonized with a third term – the observer. This three termed relationship is called scale" [Britannica, "Architecture, The Art of," 1986]

* With scale, analysis notation and strategy can include ways to guide a reader through a larger model revealing information in a gradual and orderly fashion.
Categories of Behavior

What about the active side of objects – what about their behavior?

There are three types of behavior classification used most commonly:

- on the basis of immediate causation,
- on similarity of evolutionary history [change over time], and
- on the similarity of function.

Major Tools in OO Modeling

* In the overall approach, OO modeling achieves these ends:
 * Identifying business objects and determining their sameness and difference
 * Identifying class structures that explain/define the sameness and difference of objects
 * Identifying association structures that define awareness and accessibility
 * Defining attributes that describe individual objects
 * Defining services / behaviors that describe the actions of objects and responsibilities in a specific problem domain
OO Modeling in UML 2

- UML is a collection of diagramming disciplines that define the static and dynamic characteristics of a problem or system.
 - **Structure diagrams (static in UML 1)**
 - Class
 - Composite Structure
 - Component
 - Deployment
 - Object
 - Package
 - **Dynamic diagrams**
 - Activity
 - Interaction
 - Sequence
 - Communication (collaboration in UML 1)
 - Interaction Overview
 - Timing
 - Use Case
 - State Machine

2 new in UML 2
OO Modeling in UML 2.x

- UML is a collection of diagramming disciplines that define the static and dynamic characteristics of a problem or system

 - **Structure diagrams** *(static in UML 1)*
 - Class - business objects and their structures
 - Composite Structure
 - Component
 - Deployment
 - Object
 - Package

 - **Dynamic diagrams**
 - Activity
 - Interaction
 - Sequence - system actions that complete a task
 - Communication *(collaboration in UML 1)*
 - Interaction Overview
 - Timing
 - Use Case - user / system interactions / interfaces
 - State Machine

 2 new in UML2
The UML diagrams are very useful modeling tools

They can be a white board “mock-up”

They can be the back of a bar napkin “pipe dream”

They can be the back of an envelope “notion to be completed later”

They can be so disciplined/detailed that code can be auto-generated

“Diagrams are complete documentation -- NOT!!”

Each element of a diagram requires a prose description

- class - abstract or concrete
- generalization / specialization - how the same; how different
- attribute - valid values, range constraints
- service - prose, pseudo-code, Java, Smalltalk, C#
- association - composition (whole-part), aggregation, instance connection
- cardinality - required versus optional relationships

The prose explains how the diagram element accurately reflects the “real world” business rule that being documented
You Need to be able to Explain:

- Domain
- Abstraction
 - procedural
 - data
- Encapsulation
- Organization
 - wholes and parts
 - classes and members
- Inheritance
- Association
- Communication with Messages
- Scale
- Behavior
 - immediate causation
 - change over time
 - similarity of function