Introduction
Evolution of Commerce

- Civilization’s pre-history - society was focused on hunting and gathering
- As society evolved into an agricultural focus, communities and broader interdependency emerged
- Next manufacturing shifted the commerce focus toward factory produced goods
- As the industrial age has matured control shifts toward knowledge resources
- Producing and trading in knowledge is the core of the emerging information age
Commercializing Information

- Technology offers opportunities which lead to needs which draw forth technology
 - The printing press enabled massive information warehousing and reuse
 - But the technology of paper and books has its own practical limitations (size, weight, space)
 - The technologies accompanying computers opened the door to even more massive information warehousing and reuse
 - But the technology of digital storage has its own practical limitations (currency, accuracy)
 - The interplay of the computer and communications make even more massive information reuse possible independent of warehousing
Computers as Business Appliances

- The evolution of computer technology has expanded the opportunities for their cost effective application in virtually all commerce

- 1950’s: computers for the largest companies
- 1960’s: computers for research and higher ed.
- 1970’s: computer for individual workers or jobs
- 1980’s: microcomputers for any business with access to software development
- 1990’s: computers for anyone “who can chew gum”
- 2000’s: networking begins to erase the “distance”
- 2010’s: mobile computing allows business anywhere & moving
- 2020’s: machine-learning, data analytics, autonomous technology
Computing Changes Business

- Ready access to timely management information allows business to streamline their operating costs allowing narrower profit margins and increased competition
 - Supply chain management
 - “Just in time” inventory and control
 - Personalized transactions with customer database
 - Market forecasting and trend analysis at all points in the supply chain
- Networking and mobile computing replaces the marketing truism, “Location, location, location?!”
 - Information resources stored at “headquarters” can be accessed and maintained from anywhere “on the go!”
Effective use of business information depends on information discipline

- accuracy
- consistency
- completeness
- accessibility
- currency
- understandability

Information Systems Analysis

- builds an accurate, efficient and effective model of the business environment
- assesses the opportunities and tradeoffs of applying information technology to that
- designs the integration of IT into the environment
What makes a “good” system?

* The system satisfies constraints (“must haves”)
 * Supports my business practice
 * Sufficiently reliable
 * Sufficiently efficient
 * Usable by the people who need to use it
 * Compatible with other systems I must use

* The system has cost/effective features: (“should haves”)
 * Reliability
 * Speedy
 * Flexibly adapts to my changing needs
 * Ease of use
 * Impressive
 * Compatible with other systems I would like to use
Information Systems are like Shoes

* I can’t use my shoes if: (“must haves”)
 * they don’t fit my feet
 * they are unreliable
 * they keep falling off

* I like my shoes because: (“should haves”)
 * they’re attractive
 * their style is admired by my peers
 * they have a famous brand name
 * they were very expensive
 * they were very inexpensive
 * they will last a very long time
 * they are disposable
One size shoe doesn’t fit all!

* Large information systems reflect the complexity of the organizations that they serve
 * complex communication paths
 * multiple levels of decision makers
 * large numbers of technologies at work together
 * many simultaneous users of sub-systems
 * very large investment in information technology

* Small information systems reflect small enterprises
 * limited investment potential in information
 * simpler management decision requirements
 * fewer users of the systems
 * limited technical expertise in house
Are there large and small analysts?

* Shoes are shoes!:
 * at their core information systems are almost identical
 * data storage, user interfaces, computer software, networking resources
 * all analysts need to understand system and technology principles

* Special shoes may require special techniques!:
 * large systems pose additional problems because of their complexity
 * massive redundant storage systems, computer software research and developers, systems integration across large networks and brand names, lead time for rolling out expensive system changes

* The difference: the relative importance of the skills used!