A Visual Approach to Multimedia Querying and Presentation*

Isabel F. Cruz
Department of Computer Science
Worcester Polytechnic Institute
ifc@cs.wpi.edu

www.cs.wpi.edu/People/faculty/ifc.html

Abstract

Multimedia data has become readily available from a variety
of resources, such as the Web, to users (ranging from naive
to sophisticated) who need to select and to present the data
in a way that is meaningful to their particular applications.
Delaunay™™ is our framework for querying and presenting
multimedia data stored in distributed data repositories, in-
cluding the Web. It is unique in combining user-defined
layouts with ad hoc querying capabilities, thereby enabling
users to tailor, in a simple way, the layout of virtual doc-
uments composed of retrieved multimedia objects. In this
paper, we focus on the object-oriented data models, on the
declarative query languages, and on how the results of the
queries to disparate resources are integrated to form coher-
ent user-defined documents.

1 Introduction

Database management systems (DBMSs) have traditionally
enabled the storage, retrieval, and presentation of tabular
datasets primarily for professional applications. The recent
phenomenon of the World Wide Web, the associated ad-
vent of multimedia data types (i.e., images, audio, video,
as well as text), and the emergence of widely available dis-
tributed databases have significantly changed the ways in
which we interact with data. In addition, a significant shift
in who is doing that interacting and for what purposes has
occurred; for the first time in the history of the computer,
non-professional users have access to vast quantities of in-
formation via modem-equipped computers found in homes,
schools, and offices.

To address these new requirements, concepts and tools
are needed that enable users ranging from naive to sophisti-
cated to not only select the information they need but also to

*Research supported in part by the National Science Foundation
under CAREER Award IRI-9625105.

Wendy T. Lucas
Database Visualization Research Group
Tufts University
wlucas@cs.tufts.edu

www.cs.tufts.edu/ " wlucas

present 1t in a way that is meaningful to their particular ap-
plication [17, 21]. Our framework for querying and present-
ing multimedia data stored in distributed data repositories,
including the Web, is called Delaunay™™. Tts uniqueness
lies in its combination of user-defined virtual document lay-
outs with the ability to define document content through ad
hoc queries to multiple repositories.

Delaunay™™ is a multimedia extension to the Delaunay
Database Visualization System [9], an interactive,
constraint-based system for visualizing object-oriented data-
bases. Delaunay users pictorially specify, in an intuitive
yvet formal way, the visualization of database objects. By
arranging graphical geometric objects and graphical con-
straints, users form a “picture” that specifies how to vi-
sualize data objects belonging to a class. Following a sim-
ilar approach, users of Delaunay™ visually represent the
spatial layout of the data to be retrieved from distributed
multimedia repositories.

The Delaunay™™ document layout model defines a vir-
tual document as being a set of user-specified style sheets.
Therefore, the layout of a document is based on one or more
style sheets (e.g., for the layout of the title page or of the
chapter pages). Within the document, a set of pages is asso-
ciated with each style sheet, which serves as a template for
the layout of these pages. The user associates queries with
the style templates, thus combining data selection with pre-
sentation.

Graphical icons, including a scrollable box for text, a re-
sizable window for images, and a control box for audio, are
assigned to each query and given presentation attributes.
The icons are then arranged into a style sheet by either
snapping to a grid or by explicitly specifying spatial con-
straints [8].

The Delaunay™™ query language interface supports stan-
dard SQL clauses including select, from, and where. It is
flexible enough to address queries to distributed relational
and object-oriented databases as well as to the Web. In
the latter case, an object-oriented model of multimedia doc-
uments and elements provides the attributes on which to
query. This model extends the HTML 3.2 DTD [22] by in-
corporating additional metadata attributes, including some
from an emerging standard called the STARTS protocol for

1 Delaunay is named after the cubist painter Sonia Delaunay (1885-
1979) whose compositions include bright colored geometric figures.

Internet retrieval [15]. Queries to the Web are complicated
by its cyclic structure and the fact that the destination for
a query is often not known ahead of time (for example, in
relational queries the names of the tables storing the sought-
after data are supplied by the person forming the query; on
the other hand, a query to the Web may or may not in-
clude a URL from which to extract the data). Navigational
queries, which enable the browsing of document links during
query processing, and keyword searches by multiple search
engines are therefore supported.

By combining the user-defined style templates with the
answers to the queries, a virtual document with pages popu-
lated with the retrieved multimedia objects is automatically
generated. Each page is associated with one style sheet that
determines the layout of the page’s elements. Pages are
linked together and can be traversed via a previous/next
mechanism.

The content of each page is based on the answers of the
queries assoclated with it. In some cases, more than one set
of page elements (i.e., multimedia objects) may be retrieved
in response to a query. The default display specification 1is to
show sets of objects in order of retrieval, with additional sets
connected by links that are traversed in a similar manner to
page links.

Thumbnail views of each page provide an overview of
the entire document, as shown in Figure 1. The style sheet
for this document contains a text icon, an image icon, and
an audio icon. Queries to populate the icons on each page
are first translated into the syntax of the repository to be
queried. For example, queries sent to the Web are trans-
lated into WebSQL queries [20]. After invoking the queries,
further processing of the retrieved objects is performed in
order to create the user-specified presentation.

Figure 1: Thumbnail overview of a document.

Within a thumbnail view, pages are arranged in accor-
dance with their position within the generated document,
and can be reordered via a drag and drop operation. Select-
ing a particular thumbnail enlarges that page and makes it
the active view.

In addition to the Web, an example of an application do-
main for which Delaunay™™ is currently being implemented
is the Perseus Project, a digital library on ancient Greek cul-
ture [4]. Knowledge of the data schema, as captured by the
data wrapper, provides the attributes on which to query. By
providing an integrated query/presentation interface, visi-
tors to the Perseus site [5] will be able to examine the many
vases, coins, texts, and other works in ways that are cur-
rently not possible. For example, one could display multiple

views of one piece of sculpture, compare the same view of
many different vases, or arrange a virtual document in which
each page represents the artwork of a different artist. In this
last case, users could click on one image of a work by a par-
ticular artist to view the next work in the set, or could view
the works of another artist by clicking on the link to the
next page.

Following [9], two types of save operations are required to
take full advantage of the capabilities inherent in the frame-
work presented here. One saves the actual virtual document
for future viewing. The other saves only the query and lay-
out specifications, so that new virtual documents based on
previous specifications can be generated, either by editing
the specifications or by using more sophisticated mecha-
nisms, such as inheritance and deductive rules (see [6, 7]).

The remainder of this paper is organized as follows. Sec-
tion 2 describes the Layout and Query Framework, including
the Delaunay™™ layout and data models. Section 3 con-
tains descriptions of Query Processing and Virtual Docu-
ment Generation. Our current implementation is described
in Section 4, while Section 5 contains a comparison with
related work. Owur paper concludes with the discussion of
future work in Section 6.

2 Layout Specification and Query Formation Framework

Layout specification and query formation are interactive pro-
cesses by which the user defines (1) the positioning and pre-
sentation attributes for the data to be retrieved, and (2) the
query criteria specifying what information to retrieve from
where. The user can alternate between defining layouts and
forming queries, or can complete the layout specification in
its entirety before proceeding with the query formation.

2.1 Layout Specification

A user builds a virtual document by creating one or more
style sheets. The style sheets define how to present the infor-
mation to be retrieved from distributed data repositories, in-
cluding the Web. Having more than one style sheet makes it
possible for a single document to incorporate multiple page
formats (e.g., title page, chapter pages, and index pages).
After entering a label for a style sheet, the user populates
the sheet with graphical icons that represent the classes of
the multimedia objects, or page elements, to be retrieved.
Available icons include a scrollable box for text, a re-sizable
window for images, and a control box for audio. Each icon is
associated with a particular data repository (e.g., Perseus),
multimedia data class (e.g., image), and query (e.g., to re-
trieve only certain images in that repository).

The simplest way to specify the layout is by snapping to
a grid and adjusting the icons to fill the desired space. FEach
icon will ultimately be replaced by a set of objects that fit
the query criteria associated with it. Rather than snapping
to a grid, the user can enter numerical values for the di-
mensional attributes of an icon, such as length and width
for a text box, or can place visually specified constraints on
the values of those attributes [8]. These constraints are (1)
length constraints or (2) overlap constraints (if an object
is to be placed on top of another). Length constraints are

linear (unary, binary, or ternary), mazimum or minimum
constraints.

Since more than one object within a class may satisfy the
query, one can specify how many instances of each class to
view at a time by selecting a predefined presentation view.
Alternatively, links inherent to a chosen presentation (e.g.,
stack of cards) can provide the navigational path from one
element of the set to the next.

Also assigned to each icon are presentation attributes,
such as font for text and color composition for images, whose
values are specified by the user. All instances of the data-
base class that fit the query criteria for an icon are pre-
sented throughout the document in accordance with these
attributes.

The layout shown in Figure 2 is an example of a style
sheet containing an image icon, a scrollable text box, and
a non-scrollable text box. Figure 3 shows the query tree
associated with that style sheet, which will be described in
Section 2.2. In this example, the length and width of the
image icon are proportional to those of the largest image
that will be contained in that space. These constraints are
specified via dialog box options for the length and width
attributes. For the non-scrollable text box, the “fill area”
attribute has been selected, so that the font and letter size
of the text to appear there will be automatically chosen to
fill the specified area. A maximum constraint on the height
of the page is set to be either (1) the sum of the heights of
the image object, the non-scrollable text box, and the space
between them, or (2) the height of the scrollable text box,
whichever is greater.

In addition to the layout of each page associated with
a particular style sheet, the user can organize the overall
layout of a virtual document by specifying the relationships
between the sets of pages belonging to the different style
sheets. Figure 4 shows a layout for a virtual document, or
“book” on “Greek Vases” composed with objects resulting
from queries to the Perseus database. It depicts a hierarchi-
cal organization, with the page associated with the “book
cover” style sheet at the top. The level below contains the
cover pages for the “chapters” of the book. The pages con-
tained in the chapter on vases found at Harvard University
are drawn as children of the Harvard node of the hierar-
chy. The specification of the layout of virtual documents is
achieved using visual rules [11].

2.1.1 Document Layout Model

An object-oriented model is used to represent the document
layout and the data contained within that document. One
advantage of using such a model is that each object has a
built-in unique identifier, or oid. The 17 images associated
with Vase 1920.44.54 from Harvard in the Perseus database,
for example, are automatically maintained by this model as
17 distinct entities without any programmer input required.
In addition, tuples having the same content but representing
different real-world entities are distinguishable.

The object-oriented model chosen for representing the
document layout and the retrieved data is based on the
02 [13] and F-logic [18] data models. Figure 5 shows the
structure of this data model for a virtual document. It has

Image
Text Area

Textbox

Figure 2: Style sheet.

Figure 3: Query tree.

the two primitive type constructors: tuple and set. Syn-
tactically in our representation, tuples are included between
square brackets and sets are included within braces.

The Document class is defined as a tuple containing name
and styles attributes. The latter is a set valued attribute,
since its value is a set of objects of class Style. The different
objects of class Style allow the user to model the different
kinds of pages found in virtual documents, as previously
described.

As an example, there may be one page with a “Table
of Contents” style, and many pages with a “Body” style.
Attributes of the Style class are (1) description, which con-
tains a name (of class string given by the user) and (2) pages,
which contains the set of page objects inheriting the layout
defined for a particular style.

The Page class has the attribute elements, which is set-
valued. FEach element of the set is a tuple with two at-

Greek
W oases

e T

Uiniwer sity Uiniwer sity Fhode [sland Tatn pa Toledo
of Hatvard of Achod of At Dusewn of
Mlissizsippd Utiiver sity Fentigylvatia Design Muzeinn At

Figure 4: Tree layout of

tributes: icon_id and location. The value of the latter is a
set of coordinates that define the position of the icon within
a page. Other attributes of the Page class are a reference to
the next page, and one to the previous page.

An object of class Icon is a tuple made up of a data
attribute and a query attribute. The data attribute is asso-
ciated with a data set (e.g., the set of all images of Greek
vases). Each data element in the set has a physical identifier
(pid) to denote the data repository in which it resides and
a value to identify it within that repository. For Web-based
data, that value is its URL. A set of data points represent-
ing a physical location within an icon is also associated with
each data element (e.g., the coordinates of the lower left cor-
ner and of the upper right corner of a rectangular region).
The query attribute stores the query used to populate the
icon, as described in the next section.

The multimedia classes of Text, Image, Audio, and Video
are all subclasses of the Icon class. Each inherits the data
and query attributes, and in addition has its own type-
specific ones. For example, attributes of class Text include
font and size, while attributes of class Image include color
content and resolution.

2.2 Query Formation

Query formation is initiated within the layout specification
process. Each icon that is added to a style sheet is specified
by the user as being part of a query group. The style sheet in
Figure 2 shows two “inner” groups, one containing an image
icon and a text box icon, and the other containing a text area
icon (i.e., a scrollable text box). The “outer” query group
contains all three icons. Another closely related structure is
represented in Figure 3. A group in this tree representation
can be defined by dragging and dropping icons to the tree
from the style sheet. Selecting a sub-tree from the query tree
highlights the corresponding icons in the style sheet view.

a virtual document.

Grouping icons together has both a presentation and a
query significance. In terms of presentation, elements of sets
associated with one icon are matched with elements of sets
associated with the other icons in the group. When the user
iterates on a group, the next object in all sets within the
group is displayed.

Icons within a query group are the values for the se-
lect portion of the query. Iterating through an inner query
group will change only the presentation associated with that
particular grouping. Iterating through the outermost query
group will change the presentation for the entire page (this
is similar to nested loops in a programming language, where
the inner loop changes “more quickly” than the outer loop).

An example illustrating the query formation process that
uses the Perseus database is the creation of a book of vases
from the Harvard Art Museums. The user first creates the
style sheet of Figure 2, and places the image and text box
(which contains a label associated with that particular view)
within one query group, so that the two change together as
she iterates through the many different views of each vase.
The text area icon, however, is in its own grouping box,
because the texts she will be retrieving relate to the vase
as a whole. Tterating through these texts should therefore
be independent from iterating through the different views of
the vase. Finally, all three icons are placed within an outer
query group so that she can link from one page to the next,
with each page containing information on a different vase
within the Harvard collection.

2.2.1 Data Model

After a user has specified a group, the query associated with
it can be defined through interaction with the Delaunay™™
query interface. In defining the query criteria, the user se-
lects from a list of available attributes and assigns values to
them. An object-oriented representation is used in which the

class Domument type [
tatt e ; string
styes: { Style]

class Style type [
description: string
pages {Page}]

class Page type [
elements: {[
icot_id Teon
location @ {[
x : integer

v integer]}]}

next: Page
previous: Page]

class [con type [
data: {[
walue ; string
pid: URL or data repository
location : {[
¥ integer
v : integer J}])
query : String]

Figure 5: Document layout model.

values of classes and attributes vary depending on the data
repositories to be queried. In the case of a database with
a known structure, such as that of Perseus, the attributes
come directly from the data model and are mapped to an
object-oriented representation. For queries to the Web, at-
tributes come from our object-oriented data model of Web
documents. Documents are assumed to conform to the syn-
tax of HTML 3.2 [22], which is defined by the combination
of the SGML declaration and the document type definition
(DTD). The latter declares the element types that are al-
lowed in documents. The names of elements are embedded
into HTML documents as tags, which provide directions to
browsers on how to display and treat their contents. At-
tributes appear as additional words within document tags.
In the Delaunay™™ data model, elements in the DTD have
been mapped to classes and element attributes have been
mapped to class attributes.

Our data model includes some attributes that are not
currently part of the DTD. Most of these have been put into
a new MDATA class for metadata attributes. Included here
are attributes defined by the STARTS protocol for Internet
retrieval and search [15]. Namely, the SRange attribute re-
lates to the ScoreRange field, and lists the minimum and
maximum query scores a document can get within a search
engine, while the Alg/D attribute relates to the RankingAl-
gorithmID field and identifies the ranking algorithm used
for computing scores in that search engine. Once available,
both of these attributes could be used for more effective
merging of files retrieved by multiple search engines. The
links attribute, also included in the STARTS protocol, is

used for storing all links contained in a file. At the present
time, its values are also not provided by search engines.

Other attributes that we added to the MDATA class are
currently provided by search engines. These include length,
for the length of the file, and moddate, for the last date of
file modification. Both of these attributes are also supported
by WebSQL [20], the query language into which our Web-
destined queries are translated, as explained in Section 2.2.2.

The WebSQL classification of links as interior (within
the same page), local (within the same site), or global (out-
side the current site) has also been added to our model under
the A class, which is used for describing anchors. The base
attribute tells the URL of the document containing the link,
and the href attribute tells the URL of the target of the link.

Figure 6 shows a partial data schema representing the
additions we have made to the existing DTD model. Sets
of elements, such as the set of URLs represented as {URL},
indicate that zero or more such elements may be present.
The symbol “|” is used to represent an OR condition.

2.2.2 Query Language

The Delaunay™™ query language interface provides a flexi-
ble format in which to enter object-oriented SQL-like queries.
These queries are then translated by the Query Processing
component (see Section 3) into the syntax accepted by the
underlying data repositories. Values for select, from, and
where can be chosen from dialog boxes or typed as text. A
mentions clause for Web queries has been added to support
keyword searches by multiple search engines, as provided
by [20].

The user first specifies the repositories to be queried,
so that the query interface can display the attributes, in
scrolling lists, for that repository. The values of the se-
lect clause are partially specified during the layout specifi-
cation process: when a text icon is added to a style sheet,
Delaunay™™ automatically assigns an object identifier (oid)
to it, such as “Text1”. The user must then select the text
attribute to retrieve, such as “title”. In the case of an image
or an audio recording, the file type to retrieve is specified,
such as “gif” for an image, or “wav” for a recording.

To illustrate query formation and the grouping of queries,
we will continue with our Perseus example. The relational
tables from the Perseus database that are relevant to the
queries that follow are shown in Figure 7. In our example,
a virtual document of vases from the Harvard collection is
being created. A query group contains an image and a text
icon. As can be seen in Figure 7, text attributes for descrip-
tions of all vases are stored in the Vase table. The Images
table contains pointers to images of all objects, including
vases, coins, sculptures, etc.

The image of a vase in the query is assigned the oid
Imagel by the system, and the text box is assigned the
oid Texzti. Using scrolling lists and dialog boxes, the user
creates the query in Figure 8.

If this were the only query defined for the page, then
clicking on the query group’s forward and backward links
would result in the display of each vase in the Harvard col-
lection along with its name.

By adding a separate query group containing a text box,
the user is able to view all the descriptions for each vase.

clags MDATA type

class & type

TABLE Vase

[

(Name text

st URL

file_type: texthtml | textplain | videofguicktime| ...

title: string
SRange: score_type
AlglDy: string
length: int
moddate: date
links: {URL}]

base: url

type: interior | local | global
href url

label: string |

Figure 6: Search engine classes.

Ceramic_Phase text

Decoration_description text

Shape_Description text

Ware text)

TABLE Coin

(Name text

Actual_Weight float4
Commentary text

Reverse_Legend text
Reverse_Type text)

// key

// key

TABLE Images (Image text
Name text
Sequence int

Caption text
Location text)

// key
// foreign key

Figure 7: Partial schema from Perseus.

select I.Image as Imagel, I.Name as Textl
from I in Images, V in Vase
where I.Name contains "Harvard"

and I.Name=V.Name

Figure 8: Image and text group for vases book.

The query associated with this group is shown in Figure 9.

The last query group contains all of the icons defined for
the page, and encompasses the queries shown in the exam-
ples of Figures 8 and 9. The user would like each page of the
document to contain information on one of the vases in the
Harvard collection. The query for the entire page is shown
in Figure 10. Each page of the document created from this
query refers to a different vase. Within any page, it is possi-

select V.Decoration_Description as Text2
from V in Vase
where V.Name containg "Harvard"

Figure 9: Text group for vases book.

ble to iterate through all of the different images of the vase
and read the summary information describing it.

In the next example, the user would like to view the two
sides (obverse and reverse) of each of the 523 Dewing coin
images in the Perseus database. The Images table has a
Sequence attribute, which is an ordered integer list of the
different views stored for each object. T'wo image icons are
added to the style sheet and placed within one query group.
The query associated with that group is shown in Figure 11.

select V.Name as Page
from V in Vase

where V.Name in

((select I.Image as Imagel, I.Name as Textl

from I in Images,

V in Vase

where I.Name contains "Harvard" and I.Name=V.Name)

union

(select V.Decoration_Description as Text2

from V in Vase

where V.Name contains "Harvard"))

Figure 10: Complete query for vases book.

select 0.Image as Imagel, T.Image as Image2
from 0 in Images, T in Images, C in Coin
where 0.Name = C.Name and 0.Sequence = 1 and T.Name = C.Name

and T.Sequence = 2 and 0.Name = T.Name

Figure 11: Coin document query.

The result is a document in which each page shows the two
sides of every coin with images in the database.

In posing queries to the Web, a particular URL can be
specified from which to start the search. Attributes from the
Delaunay™™ Web file schema appear as selections within
scrolling lists. Anchor attributes supporting the interior, lo-
cal, and global categorizations found in [20] are also available
for selection so that the types of links on which to navigate
can be specified. Figure 12 shows a query that finds all im-
ages of George Washington connected by two or fewer local
links to a particular URL, while Figure 13 shows that query
as entered into the Delaunay™™ query interface to WebSQL.

If the user does not know the starting location for the
above query, then a keyword search is needed. All the images
connected by two or fewer local links to a Web document
containing the keywords “George Washington” are specified.
This query is shown in Figure 14. Note that the where clause
further specifies that the keywords appear in the title (as
opposed to, say, anywhere in the document). After the user
has fully specified all the queries associated with each style
sheet, a “run” option is chosen. The queries are then sent
to the Query Processing component. If a query is found to
be syntactically incorrect, the user is prompted to edit that
query. Additionally, if a “very large number” (as defined
by the user) of objects meeting the query criteria are found,
particularly in response to Web queries, the user is given the
option of reformulating the query to be more specific.

3 Query Processing and Virtual Document Generation
Framework

Figure 15 shows the components for Query Processing and
for Virtual Document Generation, and how they relate to
the other components for Layout Specification and Query
Formation, whose functions were described in Section 2.
The Query Processing component is responsible for (1)
mapping the schemes of the underlying data repositories to

an object-oriented representation for use by the Query For-
mation component, (2) formatting queries from the Query
Formation component into the syntax recognized by their
destinations and then executing them, (3) sorting and merg-
ing the results of queries, and (4) passing those results on to
the Virtual Document Generation component. There, the
user-specified layouts are combined with the processed data
to form the completed document.

3.1 Query Processing Functions

The Query Processing component is linked via data wrap-
pers to the data repositories. Wrappers export to the Query
Processing component: (1) a description of the data types
and collections of data, and (2) the types of searches sup-
ported by the repositories. In the Query Processing com-
ponent, the schema description is mapped to an object-
oriented representation. Perseus has been implemented us-
ing the Postgres database [26], which is relational but sup-
ports inheritance of attributes between tables. It is con-
verted to our object-oriented representation using a tool that
we have developed [1]. In the case of the Web, attributes
from the data model described in Section 2.2.1 are passed
to the query interface.

After the queries that define a document have been
formed, they are sent to the Query Processing component
for translation into a syntax recognized by the query des-
tination. In the case of Perseus, that syntax is SQL. In
the case of the Web, queries are translated into WebSQL
and then executed by the WebSQL server. The files re-
turned in this latter case go through an additional selection
process in which attributes not defined for querying within
WebSQL are evaluated. For example, a user might only
want a document if a particular phrase appears in one of
its headings (as in the query of Figure 14 where the docu-
ment’s title must contain “George Washington”), believing
that phrase to be more strongly associated with that docu-

select A.IMG as Imagel

from D in Document such that http://www.loc.gov/washington.html,
A in Anchor such that linked by D length <= 2
and A.type = local

where A.label contains "George Washington" and

(A.href contains "gif" or A.href contains "jpeg'")

Figure 12: Web query with a given destination.

= UBRL Selection

IS[=] E3

of URLs:

|Entire w71 |

From URL: |http:.-"x'www.Iu:uc.guvfwashingtnn.html

Select: Document Attributes |

ar [~ Entire %eh

Linked by: Anchor Attributes |

Baze of Anchaor = |

orfv Linked by URL above

Wehere Anchor Label

I cohtaing jl"Gemge W azhington"

Wwhere Anchor Href

and result mentions kewwaonds:

I containz j |"gif" or "jpeg"

3| |Unsigned Java Applet Window

ok

Figure 13: Delaunay™™

ment than with one in which the phrase only appears in the
document’s body. This kind of selection is not performed by
the WebSQL server. Therefore, we need to parse the HTML
documents that have been returned by the WebSQL query
and select only those where the phrase appears in the title.

Next, the retrieved data must be merged on the basis
of page content as defined by the queries associated with
each page. For example, after executing the queries to form
a book of vases from the Harvard collection described in
Section 2.2.2; the images are matched up with the name of
the vase and the text describing them. Figure 16 shows
the content, by means of a structured map [12], of the
page for the Harvard 1895.247 vase. There are three image-
name pairs for this page (the name is required to be shown
with each image by the Harvard Museum), and one Decora-
tion_Description.

3.2 Virtual Document Generation

Layout specifications are combined with query results to
form the virtual document. The user can browse this doc-
ument, modify its content and appearance, and save it, as
previously described.

3.2.1 Instantiation

The first task performed by the Virtual Document Gener-
ation component is the instantiation of each page element
with multimedia objects. The retrieved objects are each
associated with an icon, a query group, and a page. The

query interface to WebSQL.

graphical constraints that are specified must also be instan-
tiated for each set of objects to which they refer. For exam-
ple, a length constraint on the height of an image area must
be applied to all of the images that will appear in that area.

3.2.2 Evaluation

The Virtual Document Generation component computes the
coordinates of the instantiated objects by evaluating the sys-
tem of instantiated constraints. The constraint resolution
strategy consists of building a constraint graph where each
vertex represents a constraint variable (i.e., a coordinate),
and each edge represents a dependency between two vari-
ables established by a constraint. The edge is undirected for
linear constraints, and is directed for a maximum or min-
imum constraint. If the edges of the constraint graph can
be oriented so that the resulting digraph has no directed
cycles, then we can solve the system of constraints in linear
time [10] by evaluating the variables in topological order.
Otherwise, we must resort to a general constraint resolution

tool (e.g., SkyBlue [24]).

3.2.3 Presentation

The Virtual Document Generation component combines the
output from the constraint solving process with the multi-
media database objects to form the completed document.
Individual page views as well as overall document views are
available. A two-way interface extending from the Layout
Specification component through the Query Formation com-
ponent to the Generation component exists so that users can

select A.IMG as Imagel

from D in Document such that D.text mentions "George Washington",
A in Anchor such that linked by D length <= 2

and A.type = "local"
where D.title contains "George W
A.label contains "George W

ashington" and
ashington" and

(A.href contains "gif" or A.href contains "jpeg")

Figure 14: Web query without a given destination.

L&jﬂjut Queﬂr B
Apecification Formation |
Virtual
Query Processing Do ent
t/_,_,-v I 3 erer ation
Hearch Data Diata .. e
Engine Wrapper Wrappet
WA Text Im age
Databasze Dratabasze

Figure 15: Architecture of Delaunay™™.

make layout-based changes to the virtual document.

4 Implementation

We are currently implementing a system based on the
Delaunay™™ framework whose architecture is shown in Fig-
ure 15. This architecture encompasses the querying and
presentation of multimedia data from multiple distributed
databases, including the Web. The Presentation Specifica-
tion and Query interfaces are written in Java so as to be
Web-accessible. A client-server architecture, based on stan-
dard Java streams and Internet sockets, enables the use of
existing constraint resolution tools (e.g., [24]) without re-
implementing them in Java.

The Layout Specification component provides the front-
end interface through which users define how to present the
data to be retrieved. The tool box, as shown in Figure 17,
provides icons for adding multimedia element representa-
tions to each style sheet. The first five buttons in the top
row are used for adding text, images, video, audio, and label
elements, in that order, to a style sheet. Once an element
has been added, double-clicking on its representation brings
up its presentation attributes. The sixth button in that row
is used for attaching queries to page elements.

In the second row, the first two buttons are for adding
length and overlap constraints. Length constraints can be
added between system-defined locations, called “landmarks”,

on the borders of elements. For example, a distance specifi-
cation can be set between the center of an image element and
the center of a text element by adding a length constraint
between those two landmarks. Alternatively, the user can
add user-defined location markers called “anchorpoints” to
elements by clicking on the third button in this row. This
makes it possible to specify length constraints between any
two points on two elements, such as the upper left corner
of one image and the lower right corner of another. The
fourth button is used for viewing and organizing the overall
layout of a virtual document, while the fifth button adds a
page border that is used for defining page attributes and in
setting constraints between the borders of a page and the
elements that fall within it. Finally, the sixth button is for a
snap-to-grid option. Standard editing functions (e.g., copy,
move, delete, and select all) are available from the pull-down
menu labeled “Edit”.

Figure 18 shows the style sheets window, which contains
two templates called “chapters” and “body” that have been
created for the virtual document on vases. In the “body”
style sheet, the blue line running vertically through the cen-
ter is a length constraint used for defining the overall size of
each page relative to its contents. After a virtual document
has been generated, its pages are displayed in a thumbnail
view similar in layout to the style sheets window. Clicking
on a page makes it the active view.

Two parallel efforts are being pursued at this time in

“Hatward 1895 2477

Image;, Hame

Decoration D escription

I age Hatwvard
1900010001 |1895.247

v age Hatvard
1990010002)|1895.247

Image Hatwvard Diecotation D escription
1990010003 1895.247 for
Harvard 1895247

Itrages Images

I ages Wazes

Figure 16: Structured map instance.

i Tool Window
Edit

=] E3

Fange

Figure 17: Tool window from Delaunay™™ .

terms of interfacing to distributed data repositories. One
of these corresponds to queries destined for the Web. Our
query interface translates queries into WebSQL, checks for
correctness, and sends them to the WebSQL server for pro-
cessing. The other effort is focused on the Perseus Project.
A data wrapper for the Perseus database is currently under
development.

5 Related Work

Constraint-based approaches to the automatic generation of
multimedia documents include the use of relational gram-
mars by Weitzman and Wittenburg [28] and the work on
presentation rules by Bertino et al. [2].

While in [2, 28] documents are generated from a set
of known objects, our approach is designed with external
datasets, including the Web, in mind. The work by
Weitzman and Wittenburg was an important source of inspi-
ration for the current work. As for the expressiveness of the
spatial layout, the work by Bertino et al. is quite similar to
our former work [6, 7], but differs from it in that it is based
on the relational data model. However, they also consider

temporal constraints, which we have not yet incorporated
into Delaunay™™. In addition, we offer a visual approach
that spans from the laying out of the content of individ-
ual viewable pages to the modification of features and page
orderings found in the completed virtual document.

Other related work includes Garlic [3], DISCO
(Distributed Information Search COmponents) [27], and In-
foHarness [25] for querying heterogeneous distributed data-
bases. The first of these approaches differs from ours in
that they query one database at a time and do not try to
integrate data obtained from a variety of sources. While
the second approach does incorporate these features, it does
not focus on multimedia data and leaves the presentation
of retrieved data up to applications programmers. The In-
foHarness system uses metadata extraction methods to cre-
ate information repositories that support run-time access to
the original information. While our system incorporates re-
trieved multimedia objects into user-defined presentations,
the information retrieved by InfoHarness is converted to a
system-generated combination of HTML forms and hyper-
links, which are then viewed using the Mosaic browser.

The system developed at Xerox PARC [23] uses a variety

i Style Sheets for Yaszes Mi=] E3

Documentz Style Sheetz Optionz
[rmage ||| Text
Text
chapters bopdy

Figure 18: Style sheet window from Delaunay™™ .

of 3D displays and integrates an algorithm for the effective
browsing of a large collection of documents. T'wo important
differences are our emphasis on user-defined layouts and the
availability of our interface over the Web. We have also
elected to use 2D displays for faster prototyping and easier
access over the Web.

The work by Hiiser et al. [16]is directed to the generation
of documents on the fly. Although this work is intended
for the visualization of a single information repository, its
presentation objectives are remarkably similar to ours. An
interesting difference is that they do not assume pre-defined
templates while we have done so, mainly with the objective
of simplifying the user’s interaction. Using Delaunay™™
the more sophisticated user can, however, achieve similar
functionality by using visual rules to shape the layout of the
virtual documents [11].

6 Conclusions and Future Work

We have proposed a framework for querying and presenting
multimedia information from distributed repositories includ-
ing the Web. This framework incorporates resource discov-
ery, the retrieval of data as specified by declarative queries,
the merging of query results, and the specification of the
layout of the retrieved multimedia objects into pages and
“books”.

In the future, we will expand our access to data reposi-
tories other than the Web and Perseus. Examples of other
data wrappers and repositories include Garlic [3], QBIC [14],
and DISCO [27]. QBIC will allow us to test our ideas on
querying images using attributes that are not of type string.

While we have an expressive framework for the specifica-
tion of spatial layout [10] we have not yet addressed the tem-
poral layout of multimedia components within the virtual
documents that are user specified (see for example [19, 29]).

We also plan on conducting usability studies, which are
of particular importance to applications intended for a large
variety of users. Although the user interface is based on the
one in [9], it must support a host of new features related
to multimedia data types and distributed data. Owur first
users are the members of the Perseus Project with whom

we have been cooperating. While they fulfill the role of the
users who are digital librarians, we would also like to have an
experimental site available to the casual users of the Perseus
site [5]. Given the popularity of this site, we believe that it
would be an ideal testbed for our ideas.

Acknowledgments

We would like to thank Greg Crane, Maria Daniels, and
David Smith from the Perseus Project for useful discussions.
The vase photos by Maria Daniels are courtesy of the Har-
vard University Art Museums.

References

[1] M. Averbuch and I. F. Cruz. From Relational
to Object-Oriented Databases: Migration Algorithm
and Software, April 1996. Manuscript available at
http//www.cs.tufts.edu/” averbukh/proj2.html.

[2] E. Bertino, B. Catania, E. Ferrari, and A. Trombetta.
Presentation Constraints for Multimedia Data. In Intl.
Workshop on Multimedia Information Systems, pages
26-28, 1996.

[3] W. F. Cody et al.. Querying Multimedia Data from
Multiple Repositories by Content: the Garlic Project.
In 8rd IFIP Working Conference on Visual Database
Systems, 1995.

[4] G. R. Crane, ed. Building a Digital Library: the
Perseus Project as a case Study in the Humanities.
In First ACM International Conference on Digital Li-
braries, pages 3—10, 1996.

[5] G. R. Crane, ed. The Perseus Project, May 1997.
http://www.perseus.tufts.edu.

[6] I. F. Cruz. DOODLE: A Visual Language for Object-
Oriented Databases. In ACM-SIGMOD Intl. Conf. on
Management of Data, pages 71-80, 1992.

[7] 1. F. Cruz. User-defined Visual Query Languages. In
IEEE Symposium on Visual Languages (VL ’94), pages
224-231, 1994.

[8] I. F. Cruz. Expressing Constraints for Data Display
Specification: A Visual Approach. In V. Saraswat
and P. V. Hentenryck, editors, Principles and Practice
of Constraint Programming, pages 443-468. The MIT
Press, 1995.

[9] 1. F. Cruz, M. Averbuch, W. T. Lucas, M. Radzyminski,
and K. Zhang. Delaunay: a Database Visualization
System. In ACM-SIGMOD Intl. Conf. on Management
of Data, pages 510-513, 1997.

[10] I. F. Cruz and A. Garg. Drawing Graphs by Exam-
ple Efficiently: Trees and Planar Acyclic Digraphs.
In Graph Drawing 94, number 894 in Lecture Notes
in Computer Science, pages 404-415. Springer Verlag,
1995.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

I. F. Cruz and W. T. Lucas. Delaunay™™: a Visual
Framework for Multimedia Presentation. In /EEFE Sym-
posium on Visual Languages (VL '97), 1997.

L. M. L. Delcambre, D. Maier, R. Reddy, and A. L.
Structured Maps: Modeling Explicit Semantics over a
Universe of Information. International Journal of Dig-
ital Libraries, 1(1):20-35, 1997.

Deux et al.. The Story of Oz. In F. Bancilhon, C. De-
lobel, and P. Kanellakis, editors, Building an Object-
Oriented Database System (The story of Oz). Morgan
Kaufmann Publishers, San Mateo, California, 1992.

M. Flickner et al. Query by Image and Video Content:
the QBIC System. IEEE Computer, 28(9):23-32, 1995.

L. Gravano, C.-C. Chang, H. Garcia-Molina, and
A. Paepcke. STARTS: Stanford Proposal for Inter-
net Meta-Searching. In ACM-SIGMOD Intl. Conf. on
Management of Data, pages 207-218, 1997.

C. Hueser, K. Reichenberger, L. Rostek, and N. Streitz.
Knowledge-based Editing and Visualization for Hyper-
media Encyclopedias. Communications of the ACM,
38(4):49-51, April 1995.

J. Foley and J. Pitkow, eds. Research Priorities for
the World Wide Web, October 1994. Authors: R. C.
Berwick, J. M. Carroll, C. Connolly, J. Foley, E. A. Fox,
T. Imielinski, and V. S. Subrahmanian; manuscript
available at http://www.cc.gatech.edu/gvu/nsf-
ws/report/Report.html.

M. Kifer, G. Lausen, and J. Wu. Logic Founda-
tions of Object-Oriented and Frame-Based Languages.
J. ACM, 42(4):741-843, July 1995.

M. Y. Kim and J. Song. Multimedia Documents with
Elastic Time. In The Third ACM International Multi-
media Conference, pages 143-154, 1995.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. Querying
the World Wide Web. International Journal of Digital
Libraries, 1(1):54-67, 1997.

B. A. Myers, J. D. Hollan, and Isabel F. Cruz, eds.
Strategic Directions in Human Computer Interaction.
ACM Computing Surveys, 28(4), 1996.

D. Raggett. HTML 3.2 Reference Specifica-
tion, W3C Recommendation 14-Jan-1997. Avail-
able from http://www.w3.org/pub/WWW /TR/REC-
html32.html.

R. Rao et al. Rich Interactions in the Digital Library.
Communications of the ACM, 38(4):29-39, April 1995.

M. Sannella. The SkyBlue Constraint Solver. Tech-
nical Report 92-07-02, Computer Science Department,
University of Washington, February 1992.

L. Shklar, A. Sheth, V. Kashyap, and S. Thatte. Info-
Harness: The System for Search and Retrieval of Het-
erogeneous Information. In Proceedings of ACM SIG-
MOD, 1995.

[26]

[27]

[28]

[29]

M. Stonebraker, L. Rowe, and M. Hirohama. The Im-
plementation of POSTGRES. Journal of Data and
Knowledge Engineering, 2(1):125-142, March 1990.

A. Tomasic, R. Amoroux, P. Bonnet, O. Kapistkaia,
H. Naacke, and L. Raschid. The Distributed Informa-
tion Search Component (DISCO) and the World Wide
Web. In ACM-SIGMOD Intl. Conf. on Management of
Data, pages 546548, 1997.

L. Weitzman and K. Wittenburg. Automatic Presenta-
tion of Multimedia Documents using Relational Gram-
mars. In ACM Multimedia Conference, 1994.

P. Zellweger. Temporal layout. In I. F. Crug,
J. Marks, and K. Wittenburg, editors, Effective Ab-
stractions in Multimedia: Layout, Presentation, and
Interaction (Proc. of the ACM Workshop, in asso-
ciation with the ACM Multimedia Conference '95).
San Francisco, Ca., November 1995. Available at

http://www.cs.tufts.edu/~ isabel/mmwsproc.html.

