
User Control of Force-Directed Layouts

Wendy Lucas and Taylor Gordon
Computer Information Systems Department, Bentley University University, Waltham, MA, USA

{wlucas, gordon_taylor}@bentley.edu

Keywords: Force-Directed Layout, Constraint Specification, Infovis System, Visualization, Visualization Language.

Abstract: Force-directed layouts are typically used for minimizing overlaps in node-link graphs. This can make it

easier to interpret and derive meaning from the resulting visualization. Once such a layout is put in motion,

however, the person interacting with it has little control over the “final” layout. This paper describes an

approach that puts even inexperienced users in charge of force-directed layouts that are not limited to

network diagrams. The visual interface to a powerful but relatively easy to use visualization grammar has

been augmented with sliders for controlling the strength of constraints applied to visual objects. Users can

change the balance of power between constraints while the visualization is running, specify different

constraints for groupings of visual objects, turn off all or some of the constraints affecting the layout, or

return a layout to its pre-constraint-solving specification. This approach is a step towards addressing the

need for tools with which all users can control and interact with force-directed layouts.

1 INTRODUCTION

Force-directed algorithms are commonly used for

creating aesthetically pleasing graph layouts that

attempt to minimize the crossing of links in node-

link diagrams while clustering related nodes

together. This makes relationships between nodes

easier to discern. Such algorithms often model nodes

as charged particles that repel each other, with links

acting as dampened springs that pull related nodes

together (Heer, Bostock, and Ogievetsky, 2010). The

position of each node is then calculated to maintain

an equilibrium that minimizes the overall kinetic

energy in the graph. A force-directed layout is

continuously in motion and will not necessarily be in

the same configuration each time it is rendered.

As an example, Figure 1a shows a force-directed

graph of character co-occurrence in Les Misérables

(Bostock, M., 2016) that has been implemented in

D3 (Bostock, Ogievetsky, and Herr, 2011). Figure

1b shows the results of reloading the visualization

shown in Figure 1a by refreshing the browser.

Figure 1a: Force-directed graph layout Figure 1b: Force-directed graph after reloading

Orange
node cluster

Orange
node cluster

The nodes appear in different positions, as noted

in the figures for a cluster of orange nodes and easily

observable for the other nodes and clusters as well.

There are limited means available for interacting

with force-directed layouts. Users can:

 Drag on a node or node grouping. This will

cause the graph to shift. The at-rest

positioning of all of the nodes in the diagram

cannot be precisely known ahead of time.

 Jiggle a node. A quick back and forth motion

applied to a node can be helpful for untangling

links that have crossed.

Beyond these two mouse motions, there are

typically no other mechanisms provided for exerting

control over the layout. Ultimately, it is the

underlying algorithms that have the final say in node

positioning. In most cases, the user will know little if

anything about those algorithms. The ways in which

various forces may be exerted on the graphical

components in a layout will also be unknown. Since

those forces are usually configurable only through

coding, there is little benefit to derive from sharing

that information with the typical user, who cannot be

expected to be an experienced programmer.

The motivation for the work presented here is

based on the premises that:

 Users can be provided with easy-to-use and

equally easy-to-understand mechanisms for

manipulating forces in visualizations that

affect layouts. The positions of graphic

objects in those layouts can thus be controlled

with far greater subtlety than is provided by

the currently supported mouse-based

interactions.

 While force-directed layouts are typically

associated with network graphs, forces can be

applied to any graphic object in any type of

layout. This provides users with additional

means for making effective use of positional

data in all types of visualizations.

 Providing more ways to interact with and

control force-directed layouts has potential

benefits to the user in both analysis and

presentation activities.

The approach described here for providing this

type of functionality is built upon a relatively simple

declarative language (Lucas and Shieber, 2008). It

enables the specification of visual layouts by tying

graphical objects to data values via a scaling

function. The actual placement of objects is

influenced by the strengths of the constraints applied

to them in conjunction with user manipulation. The

language specification currently supports five

constraint types, namely equality, approximate

equality (henceforth referred to as near), non-

overlap, and horizontal and vertical alignment.

The language has been implemented in a proof-

of-concept information visualization (Infovis)

prototype that provides functionality for specifying

and running code, viewing and interacting with the

rendered layout, and manipulating constraint

strengths.

The user can interact directly with a force-

directed layout via mouse movements and by

manipulating slider components that control the

strength of the constraints exerted on the objects in

that layout. An initial empirical study was conducted

with eleven participants using an earlier version of

the language and prototype. It demonstrated the

usefulness of this approach to constraint strength

manipulation in enabling participants to exert

control over a force-directed tree graph that was

subjected to conflicting constraints (Lucas, 2014).

This paper builds on that work by demonstrating

the use of constraints in visualizations that are not

limited to node-link graphs. It also describes the

addition of controls to the visual interface that allow

the user to:

 Pause and resume the constraint solving

process. This provides users with the

opportunity to manipulate graphic objects and

to explore the visual representation without

needing to be concerned about inadvertently

changing the layout.

 Apply a bounding box constraint to confine

graphic objects to a specified area.

 Add new constraints while a visualization is

running to a selected group of graphic objects.

A free-form “lasso” tool is used for selecting

objects to add to a group. A distinct set of

constraint strengths can then be applied to all

of the objects in the grouping. The strengths

of the constraints specified on a group

override the constraint strengths specified for

all objects in the layout.

The motivation behind this work is to help

bridge the gap between the goals of the users of

Infovis systems and the techniques that are currently

available to them for interacting with force-directed

layouts. While sophisticated users can create

customized visualizations and their own widgets for

manipulating them, those without such expertise

have no such recourse (Pantazos and Lauesen,

2012). This paper demonstrates the advantages of

having built-in mechanisms for controlling and

manipulating force-directed visualizations.

The next section of this paper discusses related

work. This is followed by a description of the visual

interface and the mechanisms it provides for

controlling constraint-based layouts. The benefits of

giving users this capability are then illustrated by

example. The paper concludes with a discussion of

the contributions of this work and directions for

future research.

2 RELATED WORK

Yi et al. (2007) note that Infovis systems have two

main components: representation and interaction.

They argue that the representation component has

received the vast majority of attention in Infovis

research. A search of recent literature finds this to

still be the case. Most Infovis papers focus on novel

methods for representing data sets, with interaction

techniques relegated to a back seat roll.

Yi et al. (2007) identify seven categories

regarding the intent of interaction: select, explore,

reconfigure, encode, abstract/elaborate, filter, and

connect. Commonly employed interaction

techniques for supporting these activities include

tool-tips for providing detailed information,

selection (of data points, menu operations, etc.),

navigation (zooming, panning), sorting, and bushing

and linking (for highlighting the representation of a

selected data items in other views).

A less commonly used interaction technique that

is particularly relevant to the work presented in this

paper is referred to as the “jitter” operation, which

allows the user to apply jitter to each item in a

visualization. This causes items to randomly shift by

a small spatial increment, thus revealing items that

may have previously been hidden by other items.

Users also gain a greater awareness of the items in a

region as a result of this shifting. The jitter operation

is supported in Spotfire®, a commercially available

Infovis system (Ahlberg,1996; Spotfire, 2016).

The Dust & Magnet multivariate information

visualization technique achieves a similar effect (Yi

et al., 2005). It visualizes data items as specks of

iron that move when magnets representing data

attributes are manipulated. The “Spread Dust”

operation makes data items gradually repel each

other, which also reduces the number of overlapping

data items.

The constraints that users can apply in the

approach described in this paper often result in

conflicting forces that cause jitter between elements.

Since forces can be applied to selected groups of

graphic objects, jitter can be used to reveal hidden

items in portions of a visualization and to enhance

exploration in all or part of the rendered layout.

Moreover, the user is able to precisely control the

amount of jitter by adjusting the strengths of the

constraints. The visualization can also be paused to

allow further exploration of items that had

previously been hidden. Users can then manipulate

the position of those items without interference from

the constraint-based forces that would otherwise be

acting upon them.

Another important tool for supporting

interactions is the slider. Sliders are typically used in

dynamic queries for narrowing the range of data

points to be selected (Yi et al., 2007). Heer and

Shneiderman (2012) describe their usefulness for

filtering ordinal, quantitative, and temporal data.

Sliders also provide a form of zooming by filtering

the visible data range. Many commercially available

Infovis systems provide sliders for selecting one or a

range of field values (see, for example, Spotfire,

2016; Tableau, 2016, and QlikView, 2016).

In the approach described in this paper, sliders

are used for controlling the strength of forces

applied to all graphic objects or subsets of those

objects. Instead of being used to impose limits on

the value of a data field, sliders provide users with

an additional means for affecting the positions of

objects of any type, not just nodes and links.

To the best of our knowledge, sliders have not

been applied for this purpose in commercially

available Infovis systems. They have been used,

however, in a constraint-based network diagram

authoring tool referred to as Dunnart (Dwyer, T.,

Marriott, K., Wybrow. M., 2009). This structural

layout tool is explicitly invoked by the user to re-

layout a network while satisfying the placement

constraints imposed by that user. It also imposes a

layout style on the diagram. The user can manipulate

sliders to change parameters of a goal function that

measures the quality of a layout. For example, a

slider can be used to adjust the minimum separation

between nodes connected by directed edges.

Sophisticated coders can always devise their

own means for controlling force-based

visualizations. At a minimum, the strengths of the

applied forces can be changed programmatically.

Controlling constraint values in this way is neither

interactive nor dynamic, however.

Figure 2: Interface panels include a coding window, a drawing area where the visualization is rendered, and a constraints

panel.

In an approach that is the most similar to that

taken here, the Snark graph visualization

demonstrations use simple, slider-based interfaces

for setting parameter values related to forces in

network diagrams (Hall, 2014). Those sliders were

developed using Google’s dat.gui controller library

for JavaScript.

The public availability of such a tool is an

indication of the usefulness of this approach for

controlling force-directed layouts. We were unable

to find any examples of such tools being developed

or used for anything beyond network diagrams.

 In the following pages, we demonstrate the

benefits of putting users in charge of force-directed

visualizations involving any type of graphic object,

not just nodes and links. Providing interactive means

for applying, removing, and controlling constraints

adds to the repertoire of tools available to users for

exploring and presenting data visualizations.

3 SPECIFYING AND

MANIPULATING

CONSTRAINTS

This section describes the controls provided in the

visual interface of the Infovis prototype that allow

users to manipulate the strength of constraints in

force-directed layouts. As noted earlier, five

constraints have been implemented in the language

specification. This subset of positional constraints is

defined as follows:

 Equality (=): anchors the position of a visual

object to a data value or another visual object.

 Near (~): specifies that a visual object should

be within close proximity (as defined in the

constraint resolution algorithm) of a data

value or another visual object.

 Non-overlap (NO): specifies that two or more

visual objects should not overlap.

 Horizontal alignment (HAlign): aligns one or

more visual objects along the x-dimension.

 Vertical alignment (VAlign): aligns one or

more visual objects along the y-dimension.

Figure 2 shows a screenshot of the interface,

which includes detachable panels for (1) specifying

and running code, (2) viewing and interacting with

the rendered layout, and (3) manipulating the

strengths of positional constraints and enforcing

bounding box constraints. Four positional

constraints are controlled via the sliders shown in

the figure; the equality constraint is not included

here as its value is absolute. A constraint is

unenforced when its slider is set to 0 and is at its

maximum value when its slider is set to 50. The

bounding box constraint is either on (enforced) or

off (unenforced). Clicking on the checkbox beneath

the sliders enforces this constraint around the entire

frame (i.e., graph drawing area). The forces exerted

on the objects to keep them within the frame

counteract forces from the positional constraints that

may be pushing them outward. The user can also

specify via a selection tool that particular visual

objects comprise a group. A bounding box can then

be enabled around that group.

Two buttons are located at the bottom of the

interface. The Clear button terminates the

visualization process and clears the drawing area.

The Pause Visualization button stops all constraints

from acting on the visual objects, so that the graph

stays in whatever state it was in immediately prior to

the user clicking this button. This makes it possible

for the user to interact with the objects in the layout

without having to counteract the forces in effect on

those objects. The label on this button toggles

between pausing and resuming the visualization.

Resuming the visualization will put the constraints

back into effect in accordance with the values set on

the corresponding sliders.

As a simple example of the graph specification

and visualization process, consider the generation of

a scatterplot in which filled circles of various colors

represent data points.

Figure 3 contains the code for defining this

visualization. Properties for the graphic components

are selected in this example by an SQL query to a

database table. Each data point in the chart is

represented by a graphic object of type ellipse. Since

the width and heights are equal, they will be

rendered as circles. A built-in scale called the

Canvas maps data values to positions in the drawing

area. In this program, the mapping is one-to-one for

each x and y coordinate.

let circles = {make s:ellipse with
 s.center ~ Canvas(x,y),
 s.width = rec.radius,
 s.height = rec.radius,
 s.color = ColorMap(rec.color),
 s.fill = true
 | rec in SQL("select x, y, color, radius from
 table")}
 in NO(circles), HAlign(circles), VAlign(circles);

Figure 3: Scatterplot specification with near, non-overlap,

horizontal alignment, and vertical alignment constraints

applied to the position of visual objects rendered as circles

in the output.

Four constraints have been specified in the code

on the positions of the graphical objects, all of which

may conflict. The near constraint will pull each

circle toward the specified x and y coordinate

values. At the same time, the non-overlap constraint

will push apart any circles that are centered at

approximately the same location. The horizontal

alignment and vertical alignment constraints will

conflict with each other and may also conflict with

the near and non-overlap constraints.

Thus, the constraint resolution process will

require user intervention to determine which objects

in the visualization should have their positions

controlled by which constraints and what the

strength of those constraints should be.

Figure 4 shows the output from executing the

code in Figure 3 with all constraint strengths initially

set to 0. The x-y coordinates that determine the

initial, center position of the circles are all in close

proximity to each other.

Figure 4: Initial scatterplot rendering with no constraints

activated.

In order to be able to see each of the circles, the

user could manually separate them by dragging each

one with the mouse to a new location. Alternatively,

the user can manipulate the constraint strength

sliders to force the objects apart. Increasing both the

near and non-overlap constraint values to the value

of 25 will cause the circles to jitter between

positions, as the near constraint will pull them

toward the location specified by their x-y coordinate

values while the non-overlap constraint pushes them

apart. Lessening the value of the near constraint

from its midpoint slider value and increasing the

value of the non-overlap constraint from its midpoint

value will allow the circles to move away from their

initially specified positions until the forces reach

equilibrium. It may also be helpful to enforce the

bounding box constraint to ensure that none of the

objects are pushed out of the frame before the circles

come to rest. The result of following this approach is

shown in Figure 5, in which the near constraint

slider has been set to 5 and the non-overlap

constraint slider has been set to 45.

To see the data values associated with each

object, the user can double-click on it. A textbox

containing a description will appear next to the

clicked object, as shown in Figure 5. If the user has

not specified a description attribute for the objects to

be generated by the code, then the default

description will be used. This consists of the type of

object and an auto-specified id number (“Ellipse 17”

for the black circle clicked in Figure 5) and the

Overlapping

circles

attribute values for that object (i.e., the underlying

values defined in the database table). For an ellipse,

those properties are the actual x and y data values

for the center coordinate and the width and height

values.

Figure 5: The scatterplot layout with the Near constraint

set to 5 and the Non-overlap constraint set to 45. Double-

clicking on an object reveals its properties.

The user can right-click on an unpopulated

portion of the frame to activate a “lasso” tool that is

used for selecting objects in the layout and adding

them to a group. To make the selection process

easier, the user can pause the visualization by

clicking on a pause button. Once the selection has

been completed, clicking that button again will

cause the visualization to resume. Figure 6 shows

the use of the lasso tool for selecting some of the red

circles in the layout. When the mouse button is

released, a pop-up window will appear, asking the

user if the selected objects should be grouped

together. If the user responds in the affirmative, then

the group is created and assigned a group number,

starting with Group 1 for the first specified

grouping, Group 2 for the second, etc.

Clicking on any object in a group changes the

Constraint Slider window shown in Figure 2 from

displaying the strengths of constraints applied to all

objects in the entire frame to one displaying the

strengths of constraints to be applied to the objects

in that grouping. Group constraints will override

those specified for the entire frame. For example, if

the Near constraint slider is set to 40 for the objects

in the frame but to five for the objects in a group,

then the latter will be the strength of the constraint

applied to objects in the grouping.

Figure 6: Use of lasso tool for selecting graphic objects

and adding them to a grouping.

Figure 7 shows the outcome of the user selecting

two groups of objects from the scatterplot and

applying different constraints to each of those

groups. All of the red circles have been selected for

Group 1, while all of the purple circles are in Group

2. The HAlignment constraint for the first group has

been increased to its maximum value, while the

VAlignment constraint for the second group has

been maximized. The user has also dragged the

objects in each grouping to different positions in the

layout. Since the objects are subject to alignment

constraints, dragging one object in a group moves all

of the other objects as well.

Figure 7: HAlignment constraint set to 50 for Group 1 and

VAlignment constraint set to 50 for Group 2.

To remove an object from a grouping, the user

must first pause the visualization by clicking the

pause button and then right-clicking on the object.

The grouping box will be highlighted in blue, and a

recycle bin icon will appear under the selected

object, as shown in Figure 8. Clicking the ‘X’ on the

Group 2

Group 1

bin will delete the object from the group. The user

can then select more objects for removal. When this

process has been completed, the resume button can

then be clicked.

Figure 8: Removing an object from Group 1.

A visualization can be returned to its initial

layout by setting the near constraint to its maximum

value and all other constraints to zero. The graphic

objects will then move back to their scaled data

values.

4 APPLICATION EXAMPLES

The following examples demonstrate how data

presentation and exploration activities can be

enhanced by providing users with interactive tools

for applying and controlling constraints on graphic

objects.

4.1 Maps

Maps are among the earliest known visualizations.

While there are several different map types, what

many share in common is the use of labels to

identify locations. Label placement is difficult, as

labels should be clearly visible when the user zooms

in or out and should remain anchored to the area

they are labelling. At the same time, labels can hide

details that would be helpful for the user to view.

Constraints can be useful in addressing these

issues. Near constraints can be used to tie the

location of a label to the object it is labelling. As the

user zooms in and out, the size of the label should

change in proportion to the zooming, but the

position should remain fixed to the same location on

the labelled object.

To address the issue of labels covering up other

data, near and non-overlap constraints can be

manipulated to allow the labels to disclose

underlying information. Specifically, near

constraints can be decreased while non-overlap

constraints can be increased. Constraint strength can

then be reversed to return the labels to their correct

positions.

As an example of this second issue, consider

Charles Minard’s famous depiction of Napoleon’s

march on Moscow. This is an example of a flow

map, which represents locations as well as the flow

of objects from one location to another. Minard’s

depiction uses approximate geography in showing

troop movements, with the width of the routes

indicating the number of surviving troops and the

color indicating the direction of troop movement.

Figure 9a shows a portion of the map generated

with the prototype. Constraint strengths are all set to

zero, so labels appear at their specified locations.

Figure 9a: A portion of Napoleon’s March on Moscow,

based on Charles Mindard’s depiction.

Figure 9b: The layout from Figure 8a with non-overlap

constraint on labels enforced.

Figure 9c: The layout from Figure 8a with non-overlap

constraints on labels and labels-lines enforced.

In Figure 9b, the strength of the non-overlap

constraint on labels has been increased. At the same

time, the strength of the near constraint has also

been increased to keep the labels near the correct

location. The amount of that increase was less than

the amount by which the non-overlap constraint was

increased, however, as the visibility of the labels

was deemed to be more important than their

position. It is now possible to read most of the

labels, but some are still hidden by solid black lines.

In Figure 9c, the non-overlap constraint has been

specified on labels not overlapping with other labels

and on labels not overlapping with lines. The near

constraint has been slowly weakened until the

conflicts between the near and non-overlap

constraints have been resolved. All labels can now

be easily read.

To return the labels to their correct positions, the

near constraint should be increased to its maximum

value and the non-overlap constraint decreased to

zero.

A shortcoming of this approach is that there is no

indication in figures 9b and 9c that the labels are not

in their correct location. At this point, it is up to the

user to add notification indicating that this is the

case. A system-based solution would be to have the

option of showing a breadcrumb-like trail leading

from the actual position to the revised position in

those cases where location is relevant.

4.2 Scatterplot

The scatterplot in Section 3 demonstrated how to

specify and manipulate constraints but did not

provide a real-world application. Figure 10a shows a

scatterplot of sales data by region, i.e., northeast

(NE), northwest (NW), central (C), southeast (SE),

and southwest (SW). The time frame is a six-month

period, as marked on the x-axis. The center of each

circle indicates the dollar amount of sales, as

depicted on the y-axis, for the corresponding month.

Each circle is labelled with the initials of the sales

manager for that region during that time period. The

radius of each circle is proportional to the number of

sales.

Note that some of the sales data is not visible, as

more than one region could have approximately the

same amount in sales for a given month. Figure 10b

shows an alternative layout in which circles

representing sales with equal values are aligned

horizontally. While the circles representing sales by

month by territory have shifted a bit from their x-

coordinate values, it is still possible to discern the

month with which each is associated. If several

regions have identical monthly sales, the scale can

be changed to accommodate a larger number of

horizontally aligned objects. Panning and zooming

could then be used as needed.

Figure 10a: Sales by month by territory.

Figure 10b: Sales data from Figure 10a with horizontal

alignment strongly enforced on groups of sales objects

with identical center locations.

To generate the layout in Figure 10b, the non-

overlap constraint was first minimally enforced on

all circle objects so that any hidden ones would be

revealed. Those that were overlapping were forced

apart in opposite directions diagonally. Groupings

were then created for each set of circles that had the

same x-y coordinates for their center positions. For

each group, the horizontal alignment constraint was

set to a strong strength, the near constraint to a

medium strength, and the non-overlap constraint to a

low strength. Removing the non-overlap constraint

on all circles in the canvas while maintain the

constraints on the groups yielded the final layout.

Resetting the near constraint to its maximum

value and all other constraints to zero will return the

visualization to the layout shown in Figure 9a.

This example demonstrates how the user gained

greater awareness of the underlying data values and

commonalities in sales data through the application

of constraints. Being able to apply constraints on

groups of objects also made it possible to present the

data in a more meaningful way.

5 CONCLUSIONS

Our focus in this paper has been on visual controls

that enable users to enforce and manipulate

constraints governing force-based layouts. While

much attention has been paid by the research

community on the representation component of

Infovis systems, far less has been devoted to

providing interaction techniques that support the

user in data exploration activities. Force-directed

visualizations pose an especially difficult challenge

when it comes to interaction, as users have little

control over the layout and any attempts at

exploration are likely to result in changes to object

positions that are not always predictable or

desirable.

We have presented a prototype that supports the

specification, generation, and control of constraint-

based visualizations. These visualizations are

expressed in the language upon which the prototype

has been built. The positional attributes of any type

of graphic object supported by the language can be

subject to constraints. Force-directed layouts are

therefore not limited to node-link diagrams.

This paper demonstrates by example how the

user can adjust the strengths of enforced constraints

by manipulating sliders provided in the interface for

this purpose. Users can also specify new constraints

while visualizations are on-going by selecting

groups of objects and applying separate sets of

constraints to those object groupings. Having the

ability to pause and resume a force-based layout also

makes it possible for the user to examine data values

without risking unintended changes to the layouts.

All of these capabilities provide users with

additional ways in which to explore and manipulate

force-directed layouts for analysis and presentation

purposes.

The approach taken in this paper is not the only

way to provide the functionality described here.

Rather, it is intended as a proof-of-concept that it is

both possible and worthwhile to support users in

these types of interaction activities.

In future work, we will be evaluating this

approach with users and making adjustments based

on their feedback. We are also working on adding

additional constraints to both the language and the

interface for providing users with additional means

for controlling and interacting with force-directed

layouts.

REFERENCES

Ahlberg, C. 1996. Spotfire: an information exploration

environment. SIGMOD Record, vol. 25, no. 4, pp. 25-

29.

Bostock, M., 2016. Mike Bostock's Blog - Force-Directed

Graph,” (accessed April 14, 2016), available at

http://bl.ocks.org/mbostock/4062045.

Bostock, M., Ogievetsky, V., Heer. J., 2011. D3 Data-

Driven Documents. IEEE Transactions on

Visualization and Computer Graphics, vol. 17, no. 12,

pp. 2301-2309.

Dwyer, T., Marriott, K., Wybrow. M., 2009. Dunnart: A

constraint-based network diagram authoring tool. In

Proceedings of the 16th International Symposium on

Graph Drawing (GD'08), LNCS 5417, pp. 420–431,

Springer-Verlag.

Hall, S., 2014. delimited.io: A blog about JavaScript and

graphics in the browser; Snark Hunting: Force

Directed Graphs in D3, accessed April 14, 2016 from

http://www.delimited.io/blog/2014/6/17/force-

directed-graphs-in-d3.

Heer, J., Bostock, M., Ogievetsky, V., 2010. A tour

through the visualization zoo. Communications of the

ACM, vol. 53, no. 6, pp. 59-67.

Heer, J., Shneiderman, B., 2012. Interactive dynamics for

visual analysis. Communications of the ACM, vol. 55,

no. 4, pp 45-54.

Lucas, W., 2014. An Interactive Approach to Constraint-

Based Visualizations. Human Interface and the

Management of Information. Information and

Knowledge Design and Evaluation, (HCII’14), LNCS

8521, Springer, pp. 54-63.

Lucas, W., Shieber, S. M., 2008. A Simple Language for

Novel Visualizations of Information. In Joaquim

Filipe, Boris Shishkov, Markus Helfert, and Leszek A.

Maciaszek, eds., Communications in Computer and

Information Science: Software and Data

Technologies, Springer-Verlag Berlin Heidelberg, Vol.

22, pp.33-45.

QlikView, 2016. http://www.qlikview.com/

Pantazos, P., Lauesen, S., 2012. Construction

Visualizations with InfoVis Tools – An Evaluation

from a User Perspective. In the International

Conference on Information Visualization Theory and

Applications (IVAPP’12), pp. 731-736.

Spotfire Inc., 2016. http://spotfire.tibco.com/. 

Tableau, 2016. http://www.tableausoftware.com/

Yi, J. S., Kang, Y. a., Stasko, J., Jacko. J., 2007. Toward a

Deeper Understanding of the Role of Interaction in

Information Visualization. IEEE Transactions on

Visualization and Computer Graphics, vol. 13, issue 6,

pp. 1224-1231.

Yi, J. S., Melton, R. , Stasko, J. T., Jacko, J. A., 2005.

Dust & Magnet: multivariate information visualization

using a magnet metaphor, Information Visualization,

vol. 4, pp. 239-256.

http://bl.ocks.org/mbostock/4062045
http://www.delimited.io/blog/2014/6/17/force-directed-graphs-in-d3
http://www.delimited.io/blog/2014/6/17/force-directed-graphs-in-d3
http://www.qlikview.com/
http://spotfire.tibco.com/
http://www.tableausoftware.com/

