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Abstract: Force-directed layouts are typically used for minimizing overlaps in node-link graphs. This can make it 

easier to interpret and derive meaning from the resulting visualization. Once such a layout is put in motion, 

however, the person interacting with it has little control over the “final” layout. This paper describes an 

approach that puts even inexperienced users in charge of force-directed layouts that are not limited to 

network diagrams. The visual interface to a powerful but relatively easy to use visualization grammar has 

been augmented with sliders for controlling the strength of constraints applied to visual objects. Users can 

change the balance of power between constraints while the visualization is running, specify different 

constraints for groupings of visual objects, turn off all or some of the constraints affecting the layout, or 

return a layout to its pre-constraint-solving specification. This approach is a step towards addressing the 

need for tools with which all users can control and interact with force-directed layouts. 

1 INTRODUCTION 

Force-directed algorithms are commonly used for 

creating aesthetically pleasing graph layouts that 

attempt to minimize the crossing of links in node-

link diagrams while clustering related nodes 

together. This makes relationships between nodes 

easier to discern. Such algorithms often model nodes 

as charged particles that repel each other, with links 

acting as dampened springs that pull related nodes 

together (Heer, Bostock, and Ogievetsky, 2010). The 

position of each node is then calculated to maintain 

an equilibrium that minimizes the overall kinetic 

energy in the graph. A force-directed layout is 

continuously in motion and will not necessarily be in 

the same configuration each time it is rendered.  

As an example, Figure 1a shows a force-directed 

graph of character co-occurrence in Les Misérables 

(Bostock, M., 2016) that has been implemented in 

D3 (Bostock, Ogievetsky, and Herr, 2011). Figure 

1b shows the results of reloading the visualization 

shown in Figure 1a by refreshing the browser. 

 

Figure 1a: Force-directed graph layout    Figure 1b: Force-directed graph after reloading
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The nodes appear in different positions, as noted 

in the figures for a cluster of orange nodes and easily 

observable for the other nodes and clusters as well.  

There are limited means available for interacting 

with force-directed layouts. Users can:  

 Drag on a node or node grouping. This will 

cause the graph to shift. The at-rest 

positioning of all of the nodes in the diagram 

cannot be precisely known ahead of time. 

 Jiggle a node. A quick back and forth motion 

applied to a node can be helpful for untangling 

links that have crossed.  

Beyond these two mouse motions, there are 

typically no other mechanisms provided for exerting 

control over the layout. Ultimately, it is the 

underlying algorithms that have the final say in node 

positioning. In most cases, the user will know little if 

anything about those algorithms. The ways in which 

various forces may be exerted on the graphical 

components in a layout will also be unknown. Since 

those forces are usually configurable only through 

coding, there is little benefit to derive from sharing 

that information with the typical user, who cannot be 

expected to be an experienced programmer.  

The motivation for the work presented here is 

based on the premises that: 

 Users can be provided with easy-to-use and 

equally easy-to-understand mechanisms for 

manipulating forces in visualizations that 

affect layouts. The positions of graphic 

objects in those layouts can thus be controlled 

with far greater subtlety than is provided by 

the currently supported mouse-based 

interactions. 

 While force-directed layouts are typically 

associated with network graphs, forces can be 

applied to any graphic object in any type of 

layout. This provides users with additional 

means for making effective use of positional 

data in all types of visualizations. 

 Providing more ways to interact with and 

control force-directed layouts has potential 

benefits to the user in both analysis and 

presentation activities.  

 

The approach described here for providing this 

type of functionality is built upon a relatively simple 

declarative language (Lucas and Shieber, 2008). It 

enables the specification of visual layouts by tying 

graphical objects to data values via a scaling 

function. The actual placement of objects is 

influenced by the strengths of the constraints applied 

to them in conjunction with user manipulation. The 

language specification currently supports five 

constraint types, namely equality, approximate 

equality (henceforth referred to as near), non-

overlap, and horizontal and vertical alignment.  

The language has been implemented in a proof-

of-concept information visualization (Infovis) 

prototype that provides functionality for specifying 

and running code, viewing and interacting with the 

rendered layout, and manipulating constraint 

strengths.  

The user can interact directly with a force-

directed layout via mouse movements and by 

manipulating slider components that control the 

strength of the constraints exerted on the objects in 

that layout. An initial empirical study was conducted 

with eleven participants using an earlier version of 

the language and prototype. It demonstrated the 

usefulness of this approach to constraint strength 

manipulation in enabling participants to exert 

control over a force-directed tree graph that was 

subjected to conflicting constraints (Lucas, 2014).  

This paper builds on that work by demonstrating 

the use of constraints in visualizations that are not 

limited to node-link graphs. It also describes the 

addition of controls to the visual interface that allow 

the user to: 

 Pause and resume the constraint solving 

process. This provides users with the 

opportunity to manipulate graphic objects and 

to explore the visual representation without 

needing to be concerned about inadvertently 

changing the layout. 

 Apply a bounding box constraint to confine 

graphic objects to a specified area. 

 Add new constraints while a visualization is 

running to a selected group of graphic objects. 

A free-form “lasso” tool is used for selecting 

objects to add to a group. A distinct set of 

constraint strengths can then be applied to all 

of the objects in the grouping. The strengths 

of the constraints specified on a group 

override the constraint strengths specified for 

all objects in the layout. 

 

The motivation behind this work is to help 

bridge the gap between the goals of the users of 

Infovis systems and the techniques that are currently 

available to them for interacting with force-directed 

layouts. While sophisticated users can create 

customized visualizations and their own widgets for 

manipulating them, those without such expertise 

have no such recourse (Pantazos and Lauesen, 

2012). This paper demonstrates the advantages of 

having built-in mechanisms for controlling and 

manipulating force-directed visualizations. 



 

The next section of this paper discusses related 

work. This is followed by a description of the visual 

interface and the mechanisms it provides for 

controlling constraint-based layouts. The benefits of 

giving users this capability are then illustrated by 

example. The paper concludes with a discussion of 

the contributions of this work and directions for 

future research.  

2 RELATED WORK 

Yi et al. (2007) note that Infovis systems have two 

main components: representation and interaction. 

They argue that the representation component has 

received the vast majority of attention in Infovis 

research. A search of recent literature finds this to 

still be the case. Most Infovis papers focus on novel 

methods for representing data sets, with interaction 

techniques relegated to a back seat roll.  

Yi et al. (2007) identify seven categories 

regarding the intent of interaction: select, explore, 

reconfigure, encode, abstract/elaborate, filter, and 

connect. Commonly employed interaction 

techniques for supporting these activities include 

tool-tips for providing detailed information, 

selection (of data points, menu operations, etc.), 

navigation (zooming, panning), sorting, and bushing 

and linking (for highlighting the representation of a 

selected data items in other views). 

A less commonly used interaction technique that 

is particularly relevant to the work presented in this 

paper is referred to as the “jitter” operation, which 

allows the user to apply jitter to each item in a 

visualization. This causes items to randomly shift by 

a small spatial increment, thus revealing items that 

may have previously been hidden by other items. 

Users also gain a greater awareness of the items in a 

region as a result of this shifting. The jitter operation 

is supported in Spotfire®, a commercially available 

Infovis system (Ahlberg,1996; Spotfire, 2016).  

The Dust & Magnet multivariate information 

visualization technique achieves a similar effect (Yi 

et al., 2005). It visualizes data items as specks of 

iron that move when magnets representing data 

attributes are manipulated. The “Spread Dust” 

operation makes data items gradually repel each 

other, which also reduces the number of overlapping 

data items. 

The constraints that users can apply in the 

approach described in this paper often result in 

conflicting forces that cause jitter between elements. 

Since forces can be applied to selected groups of 

graphic objects, jitter can be used to reveal hidden 

items in portions of a visualization and to enhance 

exploration in all or part of the rendered layout. 

Moreover, the user is able to precisely control the 

amount of jitter by adjusting the strengths of the 

constraints. The visualization can also be paused to 

allow further exploration of items that had 

previously been hidden. Users can then manipulate 

the position of those items without interference from 

the constraint-based forces that would otherwise be 

acting upon them. 

Another important tool for supporting 

interactions is the slider. Sliders are typically used in 

dynamic queries for narrowing the range of data 

points to be selected (Yi et al., 2007). Heer and 

Shneiderman (2012) describe their usefulness for 

filtering ordinal, quantitative, and temporal data. 

Sliders also provide a form of zooming by filtering 

the visible data range. Many commercially available 

Infovis systems provide sliders for selecting one or a 

range of field values (see, for example, Spotfire, 

2016; Tableau, 2016, and QlikView, 2016).  

In the approach described in this paper, sliders 

are used for controlling the strength of forces 

applied to all graphic objects or subsets of those 

objects. Instead of being used to impose limits on 

the value of a data field, sliders provide users with 

an additional means for affecting the positions of 

objects of any type, not just nodes and links.  

To the best of our knowledge, sliders have not 

been applied for this purpose in commercially 

available Infovis systems. They have been used, 

however, in a constraint-based network diagram 

authoring tool referred to as Dunnart (Dwyer, T., 

Marriott, K., Wybrow. M., 2009). This structural 

layout tool is explicitly invoked by the user to re-

layout a network while satisfying the placement 

constraints imposed by that user. It also imposes a 

layout style on the diagram. The user can manipulate 

sliders to change parameters of a goal function that 

measures the quality of a layout. For example, a 

slider can be used to adjust the minimum separation 

between nodes connected by directed edges.  

Sophisticated coders can always devise their 

own means for controlling force-based 

visualizations. At a minimum, the strengths of the 

applied forces can be changed programmatically. 

Controlling constraint values in this way is neither 

interactive nor dynamic, however.  

 



 

Figure 2: Interface panels include a coding window, a drawing area where the visualization is rendered, and a constraints 

panel. 

In an approach that is the most similar to that 

taken here, the Snark graph visualization 

demonstrations use simple, slider-based interfaces 

for setting parameter values related to forces in 

network diagrams (Hall, 2014). Those sliders were 

developed using Google’s dat.gui controller library 

for JavaScript.  

The public availability of such a tool is an 

indication of the usefulness of this approach for 

controlling force-directed layouts. We were unable 

to find any examples of such tools being developed 

or used for anything beyond network diagrams. 

 In the following pages, we demonstrate the 

benefits of putting users in charge of force-directed 

visualizations involving any type of graphic object, 

not just nodes and links. Providing interactive means 

for applying, removing, and controlling constraints 

adds to the repertoire of tools available to users for 

exploring and presenting data visualizations.  

3 SPECIFYING AND 

MANIPULATING 

CONSTRAINTS  

This section describes the controls provided in the 

visual interface of the Infovis prototype that allow 

users to manipulate the strength of constraints in 

force-directed layouts. As noted earlier, five 

constraints have been implemented in the language 

specification. This subset of positional constraints is 

defined as follows:  

 Equality (=): anchors the position of a visual 

object to a data value or another visual object. 

 Near (~): specifies that a visual object should 

be within close proximity (as defined in the 

constraint resolution algorithm) of a data 

value or another visual object.  

 Non-overlap (NO): specifies that two or more 

visual objects should not overlap. 

 Horizontal alignment (HAlign): aligns one or 

more visual objects along the x-dimension.  

 Vertical alignment (VAlign): aligns one or 

more visual objects along the y-dimension. 

 

Figure 2 shows a screenshot of the interface, 

which includes detachable panels for (1) specifying 

and running code, (2) viewing and interacting with 

the rendered layout, and (3) manipulating the 

strengths of positional constraints and enforcing 

bounding box constraints. Four positional 

constraints are controlled via the sliders shown in 

the figure; the equality constraint is not included 

here as its value is absolute. A constraint is 

unenforced when its slider is set to 0 and is at its 

maximum value when its slider is set to 50. The 

bounding box constraint is either on (enforced) or 

off (unenforced). Clicking on the checkbox beneath 

the sliders enforces this constraint around the entire 

frame (i.e., graph drawing area). The forces exerted 

on the objects to keep them within the frame 

counteract forces from the positional constraints that 

may be pushing them outward. The user can also 

specify via a selection tool that particular visual 

objects comprise a group. A bounding box can then 

be enabled around that group.  



 

Two buttons are located at the bottom of the 

interface. The Clear button terminates the 

visualization process and clears the drawing area. 

The Pause Visualization button stops all constraints 

from acting on the visual objects, so that the graph 

stays in whatever state it was in immediately prior to 

the user clicking this button. This makes it possible 

for the user to interact with the objects in the layout 

without having to counteract the forces in effect on 

those objects. The label on this button toggles 

between pausing and resuming the visualization. 

Resuming the visualization will put the constraints 

back into effect in accordance with the values set on 

the corresponding sliders. 

As a simple example of the graph specification 

and visualization process, consider the generation of 

a scatterplot in which filled circles of various colors 

represent data points.  

Figure 3 contains the code for defining this 

visualization. Properties for the graphic components 

are selected in this example by an SQL query to a 

database table. Each data point in the chart is 

represented by a graphic object of type ellipse. Since 

the width and heights are equal, they will be 

rendered as circles. A built-in scale called the 

Canvas maps data values to positions in the drawing 

area. In this program, the mapping is one-to-one for 

each x and y coordinate.  

let circles = {make s:ellipse with  
          s.center ~ Canvas(x,y),  
          s.width = rec.radius, 
          s.height = rec.radius, 
          s.color = ColorMap(rec.color), 
          s.fill = true 
      | rec in SQL("select x, y, color, radius from  
                    table")} 
 in NO(circles), HAlign(circles), VAlign(circles);      

Figure 3: Scatterplot specification with near, non-overlap, 

horizontal alignment, and vertical alignment constraints 

applied to the position of visual objects rendered as circles 

in the output.  

Four constraints have been specified in the code 

on the positions of the graphical objects, all of which 

may conflict. The near constraint will pull each 

circle toward the specified x and y coordinate 

values. At the same time, the non-overlap constraint 

will push apart any circles that are centered at 

approximately the same location. The horizontal 

alignment and vertical alignment constraints will 

conflict with each other and may also conflict with 

the near and non-overlap constraints.  

Thus, the constraint resolution process will 

require user intervention to determine which objects 

in the visualization should have their positions 

controlled by which constraints and what the 

strength of those constraints should be.  

Figure 4 shows the output from executing the 

code in Figure 3 with all constraint strengths initially 

set to 0. The x-y coordinates that determine the 

initial, center position of the circles are all in close 

proximity to each other.  

 

Figure 4: Initial scatterplot rendering with no constraints 

activated. 

In order to be able to see each of the circles, the 

user could manually separate them by dragging each 

one with the mouse to a new location. Alternatively, 

the user can manipulate the constraint strength 

sliders to force the objects apart. Increasing both the 

near and non-overlap constraint values to the value 

of 25 will cause the circles to jitter between 

positions, as the near constraint will pull them 

toward the location specified by their x-y coordinate 

values while the non-overlap constraint pushes them 

apart. Lessening the value of the near constraint 

from its midpoint slider value and increasing the 

value of the non-overlap constraint from its midpoint 

value will allow the circles to move away from their 

initially specified positions until the forces reach 

equilibrium. It may also be helpful to enforce the 

bounding box constraint to ensure that none of the 

objects are pushed out of the frame before the circles 

come to rest. The result of following this approach is 

shown in Figure 5, in which the near constraint 

slider has been set to 5 and the non-overlap 

constraint slider has been set to 45.  

To see the data values associated with each 

object, the user can double-click on it. A textbox 

containing a description will appear next to the 

clicked object, as shown in Figure 5. If the user has 

not specified a description attribute for the objects to 

be generated by the code, then the default 

description will be used. This consists of the type of 

object and an auto-specified id number (“Ellipse 17” 

for the black circle clicked in Figure 5) and the 

Overlapping 

circles 



 

attribute values for that object (i.e., the underlying 

values defined in the database table). For an ellipse, 

those properties are the actual x and y data values 

for the center coordinate and the width and height 

values. 

 

 

 

 

 

 

 

Figure 5: The scatterplot layout with the Near constraint 

set to 5 and the Non-overlap constraint set to 45. Double-

clicking on an object reveals its properties. 

The user can right-click on an unpopulated 

portion of the frame to activate a “lasso” tool that is 

used for selecting objects in the layout and adding 

them to a group. To make the selection process 

easier, the user can pause the visualization by 

clicking on a pause button. Once the selection has 

been completed, clicking that button again will 

cause the visualization to resume. Figure 6 shows 

the use of the lasso tool for selecting some of the red 

circles in the layout. When the mouse button is 

released, a pop-up window will appear, asking the 

user if the selected objects should be grouped 

together. If the user responds in the affirmative, then 

the group is created and assigned a group number, 

starting with Group 1 for the first specified 

grouping, Group 2 for the second, etc.  

Clicking on any object in a group changes the 

Constraint Slider window shown in Figure 2 from 

displaying the strengths of constraints applied to all 

objects in the entire frame to one displaying the 

strengths of constraints to be applied to the objects 

in that grouping. Group constraints will override 

those specified for the entire frame. For example, if 

the Near constraint slider is set to 40 for the objects 

in the frame but to five for the objects in a group, 

then the latter will be the strength of the constraint 

applied to objects in the grouping. 

  

Figure 6: Use of lasso tool for selecting graphic objects 

and adding them to a grouping.  

Figure 7 shows the outcome of the user selecting 

two groups of objects from the scatterplot and 

applying different constraints to each of those 

groups. All of the red circles have been selected for 

Group 1, while all of the purple circles are in Group 

2. The HAlignment constraint for the first group has 

been increased to its maximum value, while the 

VAlignment constraint for the second group has 

been maximized. The user has also dragged the 

objects in each grouping to different positions in the 

layout. Since the objects are subject to alignment 

constraints, dragging one object in a group moves all 

of the other objects as well.  

 

Figure 7: HAlignment constraint set to 50 for Group 1 and 

VAlignment constraint set to 50 for Group 2.  

To remove an object from a grouping, the user 

must first pause the visualization by clicking the 

pause button and then right-clicking on the object. 

The grouping box will be highlighted in blue, and a 

recycle bin icon will appear under the selected 

object, as shown in Figure 8. Clicking the ‘X’ on the 

Group 2 

Group 1 



 

bin will delete the object from the group. The user 

can then select more objects for removal. When this 

process has been completed, the resume button can 

then be clicked. 

 

Figure 8: Removing an object from Group 1. 

A visualization can be returned to its initial 

layout by setting the near constraint to its maximum 

value and all other constraints to zero. The graphic 

objects will then move back to their scaled data 

values. 

4 APPLICATION EXAMPLES 

The following examples demonstrate how data 

presentation and exploration activities can be 

enhanced by providing users with interactive tools 

for applying and controlling constraints on graphic 

objects. 

4.1 Maps 

Maps are among the earliest known visualizations. 

While there are several different map types, what 

many share in common is the use of labels to 

identify locations. Label placement is difficult, as 

labels should be clearly visible when the user zooms 

in or out and should remain anchored to the area 

they are labelling. At the same time, labels can hide 

details that would be helpful for the user to view. 

Constraints can be useful in addressing these 

issues. Near constraints can be used to tie the 

location of a label to the object it is labelling. As the 

user zooms in and out, the size of the label should 

change in proportion to the zooming, but the 

position should remain fixed to the same location on 

the labelled object.  

To address the issue of labels covering up other 

data, near and non-overlap constraints can be 

manipulated to allow the labels to disclose 

underlying information. Specifically, near 

constraints can be decreased while non-overlap 

constraints can be increased. Constraint strength can 

then be reversed to return the labels to their correct 

positions.  

As an example of this second issue, consider 

Charles Minard’s famous depiction of Napoleon’s 

march on Moscow. This is an example of a flow 

map, which represents locations as well as the flow 

of objects from one location to another. Minard’s 

depiction uses approximate geography in showing 

troop movements, with the width of the routes 

indicating the number of surviving troops and the 

color indicating the direction of troop movement.  

Figure 9a shows a portion of the map generated 

with the prototype. Constraint strengths are all set to 

zero, so labels appear at their specified locations.  

 

Figure 9a: A portion of Napoleon’s March on Moscow, 

based on Charles Mindard’s depiction.  

 

Figure 9b: The layout from Figure 8a with non-overlap 

constraint on labels enforced.  

 

Figure 9c: The layout from Figure 8a with non-overlap 

constraints on labels and labels-lines enforced.  

In Figure 9b, the strength of the non-overlap 

constraint on labels has been increased. At the same 

time, the strength of the near constraint has also 

been increased to keep the labels near the correct 

location. The amount of that increase was less than 



 

the amount by which the non-overlap constraint was 

increased, however, as the visibility of the labels 

was deemed to be more important than their 

position. It is now possible to read most of the 

labels, but some are still hidden by solid black lines.  

In Figure 9c, the non-overlap constraint has been 

specified on labels not overlapping with other labels 

and on labels not overlapping with lines. The near 

constraint has been slowly weakened until the 

conflicts between the near and non-overlap 

constraints have been resolved. All labels can now 

be easily read. 

To return the labels to their correct positions, the 

near constraint should be increased to its maximum 

value and the non-overlap constraint decreased to 

zero.  

A shortcoming of this approach is that there is no 

indication in figures 9b and 9c that the labels are not 

in their correct location. At this point, it is up to the 

user to add notification indicating that this is the 

case. A system-based solution would be to have the 

option of showing a breadcrumb-like trail leading 

from the actual position to the revised position in 

those cases where location is relevant.  

4.2 Scatterplot 

The scatterplot in Section 3 demonstrated how to 

specify and manipulate constraints but did not 

provide a real-world application. Figure 10a shows a 

scatterplot of sales data by region, i.e., northeast 

(NE), northwest (NW), central (C), southeast (SE), 

and southwest (SW). The time frame is a six-month 

period, as marked on the x-axis. The center of each 

circle indicates the dollar amount of sales, as 

depicted on the y-axis, for the corresponding month. 

Each circle is labelled with the initials of the sales 

manager for that region during that time period. The 

radius of each circle is proportional to the number of 

sales. 

Note that some of the sales data is not visible, as 

more than one region could have approximately the 

same amount in sales for a given month. Figure 10b 

shows an alternative layout in which circles 

representing sales with equal values are aligned 

horizontally. While the circles representing sales by 

month by territory have shifted a bit from their x-

coordinate values, it is still possible to discern the 

month with which each is associated. If several 

regions have identical monthly sales, the scale can 

be changed to accommodate a larger number of 

horizontally aligned objects. Panning and zooming 

could then be used as needed. 

 

Figure 10a: Sales by month by territory. 

 

Figure 10b: Sales data from Figure 10a with horizontal 

alignment strongly enforced on groups of sales objects 

with identical center locations. 

To generate the layout in Figure 10b, the non-

overlap constraint was first minimally enforced on 

all circle objects so that any hidden ones would be 

revealed. Those that were overlapping were forced 

apart in opposite directions diagonally. Groupings 

were then created for each set of circles that had the 

same x-y coordinates for their center positions. For 

each group, the horizontal alignment constraint was 

set to a strong strength, the near constraint to a 

medium strength, and the non-overlap constraint to a 

low strength. Removing the non-overlap constraint 

on all circles in the canvas while maintain the 

constraints on the groups yielded the final layout.  

Resetting the near constraint to its maximum 

value and all other constraints to zero will return the 

visualization to the layout shown in Figure 9a. 

This example demonstrates how the user gained 

greater awareness of the underlying data values and 

commonalities in sales data through the application 

of constraints. Being able to apply constraints on 

groups of objects also made it possible to present the 

data in a more meaningful way. 



 

5 CONCLUSIONS  

Our focus in this paper has been on visual controls 

that enable users to enforce and manipulate 

constraints governing force-based layouts. While 

much attention has been paid by the research 

community on the representation component of 

Infovis systems, far less has been devoted to 

providing interaction techniques that support the 

user in data exploration activities. Force-directed 

visualizations pose an especially difficult challenge 

when it comes to interaction, as users have little 

control over the layout and any attempts at 

exploration are likely to result in changes to object 

positions that are not always predictable or 

desirable.  

We have presented a prototype that supports the 

specification, generation, and control of constraint-

based visualizations. These visualizations are 

expressed in the language upon which the prototype 

has been built. The positional attributes of any type 

of graphic object supported by the language can be 

subject to constraints. Force-directed layouts are 

therefore not limited to node-link diagrams.  

This paper demonstrates by example how the 

user can adjust the strengths of enforced constraints 

by manipulating sliders provided in the interface for 

this purpose. Users can also specify new constraints 

while visualizations are on-going by selecting 

groups of objects and applying separate sets of 

constraints to those object groupings. Having the 

ability to pause and resume a force-based layout also 

makes it possible for the user to examine data values 

without risking unintended changes to the layouts. 

All of these capabilities provide users with 

additional ways in which to explore and manipulate 

force-directed layouts for analysis and presentation 

purposes. 

The approach taken in this paper is not the only 

way to provide the functionality described here. 

Rather, it is intended as a proof-of-concept that it is 

both possible and worthwhile to support users in 

these types of interaction activities.  

In future work, we will be evaluating this 

approach with users and making adjustments based 

on their feedback. We are also working on adding 

additional constraints to both the language and the 

interface for providing users with additional means 

for controlling and interacting with force-directed 

layouts. 
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