
PSIPLAN: Open World Planning with ψ-forms.

Tamara Babaian
Dept. of Electrical Eng. and

Computer Science
Tufts University

Medford, MA 02155 USA
tbabaian@eecs.tufts.edu

James G. Schmolze
Dept. of Electrical Eng. and

Computer Science
Tufts University

Medford, MA 02155 USA
schmolze@eecs.tufts.edu

http://www.eecs.tufts.edu/∼schmolze

Abstract

We present a new partial order planner called PSI-
PLAN, which builds on SNLP. We drop the closed
world assumption, add sensing actions, add a class of
propositions about the agent’s knowledge, and add a
class of universally quantified propositions. This lat-
ter class of propositions, which we call ψ-forms, dis-
tinguishes this research. ψ-forms represent partially
closed worlds, such as “Block A is clear”, or “x.ps is
the only postscript file in directory /tex.” We present
our theory of planning with sensing and show how par-
tial order planning is performed using ψ-forms. Note-
worthy are the facts that lack of information can be
represented precisely and all quantified reasoning has
polynomial complexity. Thus, in finite domains where
the maximum plan length is bounded, planning with
PSIPLAN is NP-complete.

Introduction

Several researchers have examined planning with sens-
ing in an open world, where the agent does not have
complete information about the world and must take
actions both to acquire knowledge and to change the
world (e.g., (Peot & Smith 1992), (Etzioni et al.
1992), (Krebsbach, Olawsky, & Gini 1992),(Scherl &
Levesque 1997),(Golden 1998)). Incompleteness of the
agent’s knowledge means that it cannot use the Closed
World Assumption (CWA) in the representation of the
state and must rely on a different method for repre-
senting large quantities of negative information. The
most comprehensive of all practical solutions to this
problem is the PUCCINI planner (Golden 1998). It
uses the LCW sentences in its representation, which
we analyze in the next section.

Some works (e.g., (Scherl & Levesque 1997)) use
first-order logic (FOL), which easily represents open
worlds, but which appears to preclude practical plan-
ning algorithms due to the undecidability of entailment
in FOL. Conformant Graphplan (Smith & Weld 1998)
considers each possible world. SGP (Weld & Ander-
son 1998) extends Conformant Graphplan to handling

sensing actions and uncertain effects.
We have developed a planning formalism called PSI-

PLAN and a sound and complete partial order planner
(POP) called PSIPOP that uses PSIPLAN to plan in
open worlds without sensing. Moreover, we have ex-
tended both PSIPLAN and PSIPOP to handle sensing
actions, knowledge goals, information loss and condi-
tional effects.

In this paper, we focus on demonstrating the power
of our ψ-form-based language PSIPLAN, discussing
the issues critical to its soundness and completeness
in open world planning, and extending the standard
POP algorithm to produce PSIPOP.

Representing Open Worlds

We consider the problem of open world planning where
the agent does not have complete information about
the world. We assume that the world evolves as a
sequence of states, where the transitions occur only
as the result of deliberate action taken by the single
agent.

Since the agent’s model of the world is incomplete,
we must distinguish between the world state (or state
of the world, or situation, in situation calculus terms
(McCarthy & Hayes 1969)) and the state of the agent’s
knowledge of the world, which we call SOK. We fur-
ther assume that the agent’s knowledge of the world is
correct.

While in theory the number of propositions in an
SOK can be unlimited, for practical purposes it must
be finite and preferably as small as possible. In many
domains the number of negated propositions that are
true in a world state is usually very large, if not infi-
nite. We cannot use the CWA, because we must dis-
tinguish propositions that are false from those that are
unknown. To compactly represent such negated infor-
mation one solution is to use quantified formulas 1.

1We use the term “quantified formula” informally to
refer to any formula that can represent a possibly infinite

(Etzioni, Golden, & Weld 1997) define a special class
of LCW (for Local Closed World information)
sentences, to specify the parts of SOK for which infor-
mation is complete. The agent is said to have Local
Closed World information relative to a logical formula
Φ if the value of every ground sentence that unifies with
Φ is either known to be true or known to be false. For
example, LCW(PS(x) ∧ In(x, /tex)) states that the
agent knows all x’s that are postscript files in direc-
tory /tex, i.e. given any particular x, the agent knows
whether (PS(x) ∧ In(x, /tex)) is true or false, but is
not unknown.

There are drawbacks in the LCW representation.
LCW reasoning is incomplete and, in some cases, dis-
cards information due to its inability to represent ex-
ceptions, i.e. the inability to state that the agent knows
the value of all instantiations of formula Φ except some.
As the result, when a value of even one instance of
Φ becomes unknown, the entire LCW sentence is no
longer true and the agent must discard it, losing infor-
mation about those instances that were known to be
false.

In contrast to LCW, we define a class of formulas,
called ψ-forms, that can represent Locally Closed
World Information with exceptions, or what we call
Partially Closed Worlds. We begin with an exam-
ple before formally defining ψ-forms.

Example 1 Consider a ψ-form
ψ = [¬PS(x) ∨ ¬In(x, y) | ¬(x = a.ps) ∧ ¬(x = fig)].
ψ represents all clauses of the form ¬PS(x) ∨
¬In(x, /tex) for all values of x except for ¬PS(a.ps)∨
¬In(a.ps, /tex) and ¬PS(fig)∨¬In(fig, /tex). Given
the following SOK

s =
{

PS(a.ps), In(a.ps, /tex), In(fig, /tex),
[¬PS(x) ∨ ¬In(x, /tex) | ¬(x = a.ps) ∧ ¬(x = fig)].

the agent can conclude that it knows that there are
no postscript files in /tex except for the postscript file
a.ps, and maybe the file fig, whose format is unknown.

Note, we do not have LCW (PS(x)∧ In(x, /tex)) in
s, because the format of fig is unknown. This example
cannot be represented in LCW representation unless
the domain is finite and ground facts are represented
explicitly, with no LCW sentences.

ψ-forms are formulas that are used to represent pos-
sibly infinite sets of ground clauses that are obtained
by instantiating what we call its main part in all pos-
sible ways, except for certain instantiations, listed as
its exceptions. In Example 1, the main part of ψ is the
formula ¬PS(x) ∨ ¬In(x, /tex), while the exceptions
are ¬(x = a.ps) and ¬(x = fig). For the efficiency of

set of ground formulas

reasoning we choose the main part of ψ-forms to be a
disjunction of negated literals.

We can alternatively view ψ-forms as logical propo-
sitions by interpreting them as a conjunction of all
ground clauses they represent. We use this duality
and define both set-theoretic and logical relations be-
tween ψ-forms. This allows us to use them efficiently
in partial order planning.

In addition to the suitability of ψ-forms for rep-
resenting negative information, ψ-form reasoning has
nice computational properties: it is sound, complete in
what we later define as sufficiently large domains, and
has only polynomial complexity.

Definitions
The general form of a ψ-form is:

ψ = [Q(~x) | ¬σ1 ∧ . . . ∧ ¬σn] (1)

Here, Q(~x) is a clause of negated literals that uses
all and only the variables in ~x, i.e., Q(~x) = ¬Q1(~x1) ∨
. . . ∨ ¬Qk(~xk) where k ≥ 0 and each Qi(~xi) is any
atom that uses all and only the variables in ~xi and
~x =

⋃k
i=1 ~xi. We require, that none of Qi(~xi) and

Qj(~xi) unify, assuming of course i 6= j.2 In addition,
we require, that for every atom Qi(~xi), every variable
in ~xi occur no more than once in its argument list.
Thus, [¬P (x, y) ∨ ¬Q(y) | ¬(x = a)] is a ψ-form, while
[¬P (x, x) ∨ ¬Q(y) | ¬(x = a)] is not because of multi-
ple occurances of x in P (x, x).

Each σi represents a set of exceptions and is just
a substitution ~yi = ~ei for some non-empty vector of
variables ~yi ⊆ ~x and some vector of constants ~ei. Each
~yi must be the same size as its corresponding ~ei. k and
n are, of course, finite.

We call a ψ-form with no exceptions a simple ψ-
form. A simple ψ-form with no variables is called a
singleton and represents a single clause. A ψ-form
that uses variables is called quantified. Given a ψ-
form (1), we define the following.

• M(ψ) is the main part of ψ, Q(~x).

• V(ψ) denotes the variables of ψ, ~x, though we usu-
ally treat it as a set.

• Σ(ψ) is the formula that describes the exceptions,
¬σ1 ∧ . . . ∧ ¬σn.

• Σi(ψ) is the substitution for the i-th exception, σi.

• #E(ψ) is the number of exceptions, n.

• Ei(ψ) denotes the instantiation M(ψ)σi.
2This requirement is not critical, but it simplifies calcu-

lation of entailment and other operations.

For example, let

ψ = [¬P (x, y) ∨ ¬Q(y,A) | ¬(x = A) ∧ ¬(x = C, y = D)]

• M(ψ) = ¬P (x, y) ∨ ¬Q(y,A),

• V(ψ) = {x, y},
• Σ(ψ) = ¬(x = A) ∧ ¬(x = C, y = D),

• Σ1(ψ) = {x = A}, Σ2(ψ) = {x = C, y = D},
• #E(ψ) = 2,

• E1(ψ) = ¬P (A, y) ∨ ¬Q(y,A), E2(ψ) = ¬P (C, D) ∨
¬Q(D, A).

A ψ-form is well-formed if and only if there is
no exception that is a subset of another exception,
i.e. Σi(ψ) 6⊆ Σj(ψ), for all i, j where 0 ≤ i, j ≤
#E(ψ) and i 6= j

ψ-forms as Sets
A ψ-form is a representation of a possibly infinite set
of ground clauses. A set represented by a ψ-form is
called a ψ-set. The ψ-set corresponding to the ψ-form
ψ is defined with operation φ. We define φ recursively
as follows:

1. We first define φ for a single ψ-form.

(a) φ([]) = ∅
(b) φ(ψ) = {M(ψ)σ |M(ψ)σ is ground}, if ψ is sim-

ple. Note that φ([c]) = {c}, if c is a ground clause.
(c) φ(ψ) = φ([M(ψ)]) − φ([E1(ψ)]) − . . . −

φ([E#E(ψ)(ψ)]), otherwise.

2. φ({ψ1, . . . , ψk}) = ∪k
i=1φ(ψi), i.e. a ψ-set of a set of

ψ-forms is the union of the ψ-sets of its elements.

3. Let 21 and 22 denote either a single ψ-form or a set
of ψ-forms. Let ∗ denote any of the set operations
∩,∪,−, . or −̇ (last two operations are defined later)

φ(21 ∗22) = φ(21) ∗ φ(22).

For the simplicity of presentation, since ψ-forms and
sets of ψ-forms represent sets of ground clauses, we say
that a ground clause c is in 2, written c ∈ 2, instead
of saying c ∈ φ(2). Here 2 denotes either a single
ψ-form or a set of ψ-forms.

Thus, given 1.and 2.

• c ∈ ψ iff ∃σ . c = M(ψ)σ and ∀σ, i . 1 ≤ i ≤
#E(ψ) ⇒ c 6= Ei(ψ)σ , and

• c ∈ Ψ, where Ψ denotes a set of ψ-forms, when there
is a ψ-form ψ in the set Ψ, such that c ∈ ψ.

We say that two ψ-forms are equivalent, written
ψ1 = ψ2 if their corresponding ψ-sets are equal, i.e.
ψ1 = ψ2 if and only if φ(ψ1) = φ(ψ2).

In a well-formed ψ-form there are no exceptions
such that clauses it denotes are a subset of the
clauses denoted by another exception, i.e., φ([Ei(ψ)]) 6⊆
φ([Ej(ψ)]) for all i, j where 0 ≤ i, j ≤ #E(ψ). It is
a simple matter to transform a ψ-form that is not
well-formed into an equivalent one that is well-formed.
Thus, from here on, we only consider well-formed ψ-
forms. Note that a well-formed ψ-form representation
of a ψ-set is not unique.

From now on we assume that every equation in-
volving ψ-forms or sets of ψ-forms actually denotes an
equality between the corresponding ψ-sets. I.e. when
A and B are such expressions, A = B is a shorthand
for writing φ(A) = φ(B).

ψ-form Logic
We can add ψ-forms to propositional logic by providing
an interpretation rule for them.

An interpretation, I, is an assignment of truth values
to all atoms of a theory. Interpretation rules extend
an interpretation by defining the truth value of every
sentence of a theory, not just atoms. We adopt the
standard interpretation rules of the propositional logic
and add the following rule for interpreting a ψ-form or
a set of ψ-forms, denoted below by 2 .

I(2) =
∧

c∈φ(2)

I(c), (2)

i.e. a single ψ-form or a set of ψ-form is interpreted as
a conjunction of all clauses in it.

Now that we have defined an interpretation for ψ-
forms we can define entailment in a logical language
containing ψ-forms in the usual way. A model of a
logical formula is an interpretation that assigns true to
that formula. A formula a entails formula b if and
only if every model of a is also a model of b.

Given the definition of φ, we can see that for any two
ψ-forms or sets of ψ-forms 21 and 22, φ(21) = φ(21)
iff (21 |= 22 and 22 |= 21).

PSIPLAN Formalism

Worlds and SOKs
A world state is a set of all literals that are true in the
world. We define a domain proposition or simply a
proposition as either an atom or a ψ-form. Agent’s
state of knowledge, or SOK is a consistent set of do-
main propositions.

Representing Actions

Actions are ground and are represented in a fashion
similar to STRIPS. Each action a has a name, N (a),
a set of preconditions, P(a), and a set of domain lit-
erals called the assert list , A(a). Action preconditions
identify the domain propositions necessary for execut-
ing the action. The propositions in P(a) can include
literals and quantified ψ-forms.3

The assert list, also called the effects of the domain
action, identifies all and only the domain propositions
whose value may change as a result of the action. We
assume that an action is deterministic and can change
the truth only finite number of atoms, and thus any ψ-
form in the assert list defines a single negated literal.

State Update Procedure.

Actions cause transitions between the world states.
The agent’s SOKs must evolve in parallel with the
world, and must adequately reflect the changes in the
world that occur due to an action. Correctness of an
SOK update guarantees that the SOK is always con-
sistent with the world model, given a consistent initial
SOK. The other desirable property of the SOK update
is completeness: we would like the agent to take ad-
vantage of all information that becomes available and
not to discard what was previously known and has not
changed. Clearly, the correctness and completeness
properties of the SOK update, as well as soundness and
completeness of entailment within the state language
are prerequisites for a sound and complete planning
algorithm.

We use symbols w, w′, w1 . . . wn to refer to states of
the world, W,W ′ to refer to the sets of world states,
and s, s′, s1 . . . sn to refer to the agent’s SOK.

The correctness and completeness criteria are best
formulated in the context of possible worlds. We
define a set of possible worlds given a SOK s as the
set B(s) = {w |w |= s}. Let do(a,W) denote the set of
world states obtained from performing action a in any
of the world states in W , and update(s, a) denote the
SOK that results if the agent performs action a from
SOK s. We say that the update procedure is correct
iff

B(update(s, a)) ⊆ do(a,B(s)) (3)

i.e. every possible world after performing the action a
has to have a possible predecessor.

3Ruling out other forms of non-quantified disjunction is
not a limitation, since any action schema that has a non-
quantified disjunction as its precondition, can be equiva-
lently split into several actions, each of which is identical
to the initial schema, but has only one of the disjuncts for
the preconditions.

The update procedure is complete iff

do(a,B(s)) ⊆ B(update(s, a)) (4)

i.e. every world obtained from a previously possible
world is accessible from the new SOK. This implies
that all changes to the world must be reflected in the
new SOK.

To achieve correctness of SOK updates, the agent
must remove from the SOK all propositions whose
truth value might have changed as the result of the
performed action.

In order to be complete , the agent must also add to
the SOK all facts that become known. The complex-
ity of the SOK update thus depends critically on the
process of identifying the propositions that must be re-
tracted to preserve correctness. In our language this
computation is reduced to computing the entailment,
which has polynomial complexity.

Before defining the world state transition caused by
actions, we introduce the operations of e-difference and
image . These operation come handy in planning, as
we will show later.

For any two sets of ground propositions A and B we
define e-difference and image (the image of A in
B), respectively, as follows:

B−̇A = {b | b ∈ B ∧ A 6|= b}
A . B = {b | b ∈ B ∧ A |= b}

B−̇A is the subset of B that is not entailed by A while
A . B is the subset of B that is entailed by A. Thus,
(B−̇A) and (A . B) always partition B. Moreover, we
have the following equivalences.

1. B−̇A = B − (A . B) and
2. A . B = B − (B−̇A)

Determining image and e-difference between sets of
atoms is straightforward, and so we will not discuss
it. Between ψ-forms, however, it is more complicated.
We defer discussing it until the Calculus Section. .

Our agent can only execute an action a if its SOK
about the current state is s and s |= P(a). To obtain
the agent’s SOK s after performing an action a, we first
remove all propositions implied by the negation of the
assert list, as only those propositions of s might change
their values after a. We also remove from the SOK all
redundant propositions, i.e. those that follow from the
effects of the action, and then add these effects to the
new state. The agent’s SOK after executing action a
in the SOK s is described by the following formula.

update(s, a) = ((s−̇A−(a))−̇A(a)) ∪ A(a) (5)

where for a set of propositions P , P− denotes the
set of the negations of propositions in P .

Theorem 1 The state of knowledge update procedure
(5) is correct and complete.

We do not present proofs in this paper due to space
limitations.

Example 2 For an example, we characterize the
action a = mv(fig, /img, /tex), which moves the
file fig from directory /img into /tex. We
use T (x, PS) to represent that file x has type
postscript. Let P(a) = {In(fig, /img)} which states
that fig must be in /img. Also, let A(a) =
[¬In(fig, /img), In(fig, /tex)]. We begin with an
SOK:

s =





In(fig, /img), In(a.tex, /tex), T (a.ps, PS),
[¬In(x, d) ∨ ¬T (x, PS) | ¬(x = a.ps) ∧ ¬(d = /ps)],
[¬In(x, /img) | ¬(x = fig)]

a = mv(fig, /img, /tex) is executable in s, and the
resulting SOK is:

s′ =





In(fig, /tex), In(a.tex, /tex), T (a.ps, PS),
[¬In(x, /img)], [¬In(x, d) ∨ ¬T (x, PS) |
¬(x = a.ps) ∧ ¬(d = /ps) ∧ ¬(x = fig, d = /tex)]

Note that s contained ¬In(fig, /tex) ∨ ¬T (fig, PS)
and that we added In(fig, /tex) when determining
s′. If our update rule retained ¬In(fig, /tex) ∨
¬T (fig, PS) in s′, then in s′ we could perform res-
olution and conclude that ¬T (fig, PS). However,
this would be wrong because we have no informa-
tion on fig being a postscript file or not. In-
stead, our update rule deletes any clause that is en-
tailed by ¬In(fig, /tex), and so s′ does not contain
¬In(fig, /tex) ∨ ¬T (fig, PS).

The Planning Problem.
As usual in a planning problem we are given a set of ini-
tial conditions I, a set of goals G and a set of available
actions A. I and are G sets of domain propositions.

A solution plan is a sequence of actions, that is exe-
cutable and transforms any state satisfying the initial
conditions into a state satisfying the goal. Given a se-
quence of actions a1, . . . , an, let Wi denote the set of
worlds do(..(do(do(B(I), a1), a2), . . .)ai). Then, a se-
quence of actions a1, . . . , an is called a solution plan,
if

1. for all w in Wn, w |= G, and

2. for all values of i, 0 ≤ i < n, and for all w in Wi

w |= P(a(i+1)).

A planner is called sound if and only if it returns only
solution plans, and complete, if it returns every solu-
tion plan.

Let si denote the SOK
update(update(. . . (update(s0, a1), . . .)ai)). We call a
sequence a1, . . . , an a solution in the agent’s the-
ory if and only if

1. for each i , 0 ≤ i < n, si |= P(ai+1), and

2. sn |= G.

Our planner always returns a solution in the agent’s
theory, which is guaranteed to be a solution plan, given
that the initial SOK s0 is equal to {p | p ∈ I} and the
agent’s update function is correct.

PSIPOP Algorithm

Figure 1 shows the PSIPOP algorithm as a modified
POP algorithm written for a non-deterministic ma-
chine. We assume the reader is already familiar with
SNLP-style planning (McAllester & Rosenblitt 1991).
We made a few changes to the standard algorithm so
that it easily generalizes to handling ψ-forms. These
changes arise when ψ-forms are added to the state and
action description language. Since a link between two
ψ-forms actually represents a multitude of links be-
tween ground clauses of the source and target ψ-forms,
we need to introduce new techniques of establishing
and protecting such links. These techniques are based
on the theory of ψ-form entailment, which we briefly
describe in the Calculus section.

There are three important changes to the POP.
Change 1. Causal links now have both source and
target conditions, which may differ. The source con-
dition must entail the target condition. For example,
we may have step S1 with effect ψ1 and step S2 with
precondition ψ2 where

ψ1 = [¬In(x, /psdir) ∨ ¬T (x, y) | ¬(y = PS)]
ψ2 = [¬In(x, /psdir) ∨ ¬T (x, TEX) ∨ ¬O(x, Joe)]

ψ1 states that are no files in directory /psdir except
Postscript files. ψ2 requires that there are no files of
type TEX in /psdir owned by Joe. Clearly, ψ1 |= ψ2

and so we can have a causal link from ψ1 on S1 to ψ2

on S2.
Thus, causal links between ψ-forms actually repre-

sent a set of causal links between each clause that is
supported and the clause that support it. This change
is reflected in step 2 of PSIPOP.
Change 2. In cases similar to the above where ψ1 6|=
ψ2 but where ψ1 nearly entails ψ2, we try splitting the
goal ψ2. ψ1 nearly entails ψ2 iff [M(ψ1)] |= [M(ψ2)].
In such cases, we split ψ2 into two parts:

• The precise portion of ψ2 that is entailed by ψ1—this
is the image of ψ1 in ψ2, ψ1 . ψ2—and

• The remainder of ψ2—this is precisely ψ2−̇ψ1.

Algorithm. PSIPOP-S (<S, O, L>, open)

1. If open is empty, return <S, O, L>

2. Pick a goal < c, Sc > from open and remove it from
open. choose an existing step Ss from S, or a new
step Ss, that has an effect e where e |= c or e nearly
entails c (if nearly entails, then Split Goal (e,c), goto
4).

If no such step exists then fail.

3. Add link Ss
e,c→ Sc to L.

4. Add Ss ≺ Sc to O.

5. if Ss is a new step:

• Add START≺ Ss and Ss ≺FINISH to L.
• For each p in P(Ss) (the preconditions of Ss), add

< p, Ss > to open.

6. For every step St that threatens a link Ss
e,c→ Sc

nondeterministically choose either:

• Demotion: Add St ≺ Ss to O.
• Promotion: Add Sc ≺ St to O.
• Split Link(e,c).

7. If O is inconsistent then fail.

8. Recursively call POP with updated <S, O,L> and
open.

Triple < S, O,L > denotes a partial plan; S is a set
of steps, which are (ground) actions, initially contains
only START and FINISH; O is a set of ordering con-
straints of the form Si ≺ Sj , where Si and Sj are steps
in S, initially contains START≺FINISH; L is a set of
(causal) links of form Si

e,p→ Sj , where p is a precondi-
tion of Sj , e is an effect of Si (i.e., e is in the assert
list of Si), and e |= p. We call Si and e the source
step and proposition, and Sj and p the target step
and proposition.L is initially empty. open is the list of
open preconditions and initially contains preconditions
of the FINISH step.
We assume that all resolutions have been performed in
the effects of the initial step – START.

Figure 1: Modified POP algorithm

Once split, we add a causal link from ψ1 on S1 to
(ψ1.ψ2) on S2, and we are left with (ψ2−̇ψ1) on S2 that
still needs to be linked. Fortunately, calculating both
image and e-difference is straightforward and results
in a set of ψ-forms, each of which are strictly smaller

Split Goal(ψe, ψc): Perform when
– ψe, ψc are ψ-forms and
– ψe nearly entails ψc – i.e.,

[M(ψe)] |= [M(ψc)] but ψe 6|= ψc.

1. Partition ψc into ψ1
c = ψe . ψc and (ψc−̇ψe).

2. Add Ss
ψe,ψ1

c→ Sc to L.
3. For each ground clause c ∈ (ψc−̇ψe),

add < c, Sc > to open.

Figure 2: Split Goal

Split Link(ψe, ψc):Perform when

– effect A on St threatens Ss
ψe,ψc→ Sc – i.e.

([¬A] . ψe) . ψc 6= ∅.
1. Add Ss ≺ St and St ≺ Sc to O.
2. Partition ψe into [¬A] . ψe and ψ1

e = ψe−̇[¬A].
3. Partition ψc into ([¬A] . ψe) . ψc and

ψ1
c = ψc−̇([¬A] . ψe).

4. Remove original link Ss
ψe,ψc→ Sc from L.

5. Add Ss
ψ1

e ,ψ1
c→ Sc to L.

6. For each ground clause c ∈ (([¬A] . ψe) . ψc),
add < c, Sc > to open.

Figure 3: Split Link

than the original ψ-form goal in a well founded way.
For an example, assume again that we have ψ1 as an

effect on step S1 and ψ2 as a precondition on step S2

where
ψ1 = [¬In(x, /psdir) ∨ ¬T (x, y) | ¬(y = PS)]
ψ2 = [¬In(x, /psdir) ∨ ¬T (x, y) ∨ ¬O(x, Joe)]

ψ1 is the same as above. ψ2 requires that there be
no files of any type in /psdir owned by Joe. Clearly,
ψ1 6|= ψ2 but ψ1 nearly entailed ψ2. We split ψ2 into:

• ψ1
2 = ψ1 . ψ2 =

[¬In(x, /psdir) ∨ ¬T (x, y) ∨ ¬O(x, Joe) | ¬(y = PS)],
which are all the files in /psdir owned by Joe except
for Postscript files, and

• ψ2
2 = ψ2−̇ψ1 =

[¬In(x, /psdir) ∨ ¬T (x, PS) ∨ ¬O(x, Joe)], which
are all the Postscript files in /psdir owned by Joe.

Next, we add a causal link from ψ1 on S1 to ψ1
2 on S2

and we are left with ψ2
2 unsupported. Thus, much of

ψ2 is now supported except for ψ2
2 .

This is captured as the Split Goal procedure in Fig-
ure 2.
Change 3. The final change to POP adds a new way
to resolve threats. A threat is any effect of an action,

that results in the removal of the source condition in
the SOK during the update (see 5). In our formalism,
only a ground atom can threaten a link between ψ-
forms, and conversely, only a ψ-form can threaten a
link between ground atoms. In the former case, we add
a new threat resolution method called link splitting.

For an atom to threaten a link, it must remove from
the source ψ-form proposition(s) that support some
proposition(s) in the target ψ-form. More formally,
atom A may pose a threat to the link from ψ1 to ψ2 if
([¬A] . ψ1) . ψ2 6= ∅.

Let there be a link from effect ψ1 on step S1 to pre-
condition ψ2 on step S2. Moreover, let atom A be an
effect of step S where A threatens the link. We will
refer to a ψ-form constructed out of the negation of A,
namely, ψA = [¬A], which is a singleton set.

The threat resolution method does the following.

• ψ1 on step S1 is replaced by ψ1
1 = ψ1−̇ψA and ψ2

1 =
ψA . ψ1. Note that ψ1

1 is precisely the subset of
ψ1 that is not threatened by A and that ψ2

1 is the
residual of ψ1.

• ψ2 is replaced by ψ1
2 = ψ1

1 . ψ2 and ψ2
2 = ψ2−̇ψ1

1 .
Note that ψ1

2 is precisely the subset of ψ2 that is
now supported by ψ1

1 and that ψ2
2 is precisely the

residual of ψ2.

• The original link from ψ1 to ψ2 is replaced by a link
from ψ1

1 to ψ1
2 . Condition A on S no longer is a

threat.

• New support must be found for ψ2
2 on step S2.

This is presented as the Split Link procedure in Figure
3.
Theorem 2 PSIPOP is sound and complete.

Calculus
In this section we sketch how to determine entailment,
image and e-difference. These calculations are some-
what complex and we do not have space to present
them fully. A complete description can be found in
(Babaian & Schmolze 1999). For the reader who is
not interested in these methods, this section can be
skipped.

Everywhere below we make a sufficiently large do-
main assumption, i.e. that the object domain contains
more objects that are mentioned in all of the partici-
pating ψ-forms. Certainly, a domain that is only par-
tially known is sufficiently large.

Determining Entailment
Domain ψ-forms. The critical factor in keeping ψ-
form reasoning tractable is given by the following The-
orem, that states, essentially, that we do not have to

examine combinations of ψ-forms when checking ψ-
form entailment.
Theorem 3 Let ψ1, . . . , ψn be simple ψ-forms and
let ψ be an arbitrary ψ-form. {ψ1, . . . , ψn} |= ψ iff
∃i . (1 ≤ i ≤ n) ∧ (ψi |= [M(ψ)]).
Thus, if we ignore exceptions, then to show that a set
of ψ-forms entails ψ, we need to find only one ψ-form
in the set that entails [M(ψ)].

Checking if ψi |= [M(ψ)] is, as it turns out from
the next Theorem, is just a matter of finding a subset-
match between the the main parts, as both ψ-forms are
simple. At the heart of this result is the observation
that given two ground clauses, C1 and C2, C1 |= C2 iff
C1 ⊆ C2. Here, we are treating each ground clause as
a set of literals.
Theorem 4 Given two simple ψ-forms, ψ1 and ψ2,
ψ1 |= ψ2 iff there exists a unifier, σ such that
M(ψ1)σ ⊆M(ψ2).
Note that there can be more than one way a clause
can subset-match onto another clause. For example,
matching ¬P (x) onto ¬P (a)∨¬P (b)∨¬Q(y) produces
two different substitutions: (x = a) and (x = b).

The next Theorem presents necessary and sufficient
conditions for entailment between ψ-forms.
Theorem 5 Let ψ1, . . . , ψn and ψ be arbitrary ψ-
forms. {ψ1, . . . , ψn} |= ψ iff there exists a k,1 ≤ k ≤ n,
such that:

• [M(ψk)] |= [M(ψ)] (i.e., the main part of ψk entails
[M(ψ)]), and

• {ψ1, . . . , ψk−1, ψk+1, . . . , ψn} |= ψ−̇ψk.

The last requirement in Theorem 5 requires some
explanation. While [M(ψk)] |= [M(ψ)] , the ex-
ceptions of ψk weaken ψk. Thus, each clause in
ψ−̇ψk must be entailed by some other ψ-form in
{ψ1, . . . , ψk−1, ψk+1, . . . , ψn}.

We discuss methods of computing the e-difference
in a later section. Here we would just like to notice
that entailment in PSIPLAN is easily decided and has
a time complexity that is polynomial in the number of
propositions, maximum number of exceptions and the
maximum number of variables used in a ψ-form.

Note also the following simple facts.
Given two ground atoms A and B, A entails B, writ-

ten A |= B, iff A = B.
Given an atom A and ψ-form ψ, A can never entail

ψ and ψ can never entail A.

Determining Image and E-Difference
Among ψ-forms
The image and difference operators between ψ-forms,
in general, are complex. Important for the algorithms

presented in this paper are the facts that both opera-
tions produce sets of ψ-forms, the time complexity of
ψ-form image and e-difference is polynomial the max-
imum number of variables used in a ψ-form and the
maximum number of exceptions. Here we only state
the key results to provide the reader with some intu-
ition about ψ-form calculus. The full account of this
calculus can be found in (Babaian & Schmolze 1999).

We define MGU(A,B, V) as the most general unifier
of A and B using only the variables in V . I.e., For σ =
MGU(A,B, V), Aσ = Bσ and σ is a most general such
unifier. In a similar fashion, we define MGU⊆(A,B, V)
as the set of all σ such that Aσ ⊆ Bσ and σ is a most
general such unifier. MGU(A,B) and MGU⊆(A, B)
are defined similarly, except they do not restrict the
bindings to any particular set of variables.

Theorem 6 For any ψ1, ψ2 - simple ψ-forms ψ1.ψ2 =
{[M(ψ2)σ] |σ ∈ MGU⊆(M(ψ1),M(ψ2))}
So computing the image of one simple ψ-form in an-
other simple ψ-form amounts to finding either a unifier,
or a set of subset unifiers of their main parts and ap-
propriately instantiating the main part of the second
ψ-form.

As we will see shortly, to compute e-difference we
first perform the set or subset unification procedure
and then add the resulting substitution(s) to the set of
exceptions of the second ψ-form. Before adding those
substitutions, we preprocess them to conform to the
syntax of ψ-forms, i.e. we remove all bindings on vari-
ables in V(ψ1), add a ¬ sign in front of each σ. That
is the purpose of the Σ′ in the next Theorem.

Theorem 7 For any ψ1, ψ2 -ψ-forms such that ψ1 and
is simple

ψ2−̇ψ1 =
{ ∅, if ψ1 |= ψ2,
{[M(ψ2) |Σ(ψ2) ∨ Σ′]} otherwise.

where Σ′ = {¬σ′ |σ ∈ MGU⊆(M(ψ1),M(ψ2)) and
σ′ = MGU⊆(M(ψ1),M(ψ2)σ,V(ψ2)).

Note, that the first case is actually subsumed by the
second, because if ψ1 |= ψ2, MGU⊆(M(ψ1),M(ψ2))
contains the substitution σ which subset matches
M(ψ1) onto M(ψ2), i.e. σ only uses variables from
V(ψ1). In such case the added exception σ′ = ¬∅ de-
notes the whole [M(ψ2)], thus leaving the resulting
ψ-form equal to ∅.

Also, when MGU⊆(M(ψ1),M(ψ2)) is empty, Σ′ is
empty and ψ2−̇ψ1 = ψ2.

The image and e-difference computations in the gen-
eral case are reduced to computing the operations on
the simple ψ-forms. We do not present it here, but
demonstrate it in the following example.

Example 3 Let ψi =
[¬In(f, d) | ¬(d = /tmp) ∧ ¬(f = a.ps, d = /tex) ∧ ¬(f = b.ps)],
ψg = [¬In(fg, dg) ∨ ¬T (fg, PS) | ¬(dg = /ps)].
f, d, fg, dg denote variables.

The main part of ψi implies the main part of ψg,
and MGU⊆(M(ψi),M(ψg),V(ψi)) =
{{f = fg, d = dg}}To calculate the difference ψg−̇ψi

we first find the images of ψi exceptions, E1(ψi) =
[¬In(f, /tmp)], E2(ψi) = [¬In(a.ps, /tex)], E3(ψi) =
[¬In(b.ps, d)], on M(ψg).

[E1(ψi)] . [M(ψg)] = [¬In(fg, /tmp) ∨ ¬T (fg, PS)]
[E2(ψi)] . [M(ψg)] = [¬In(a.ps, /tex) ∨ ¬T (a.ps, PS)]
[E3(ψi)] . [M(ψg)] = [¬In(b.ps, dg) ∨ ¬T (b.ps, PS)]
The clauses of ψg that aren’t entailed by ψi are ex-

actly those that are entailed by ψi’s exceptions and are
not themselves exceptions of ψg, i.e.

ψg−̇ψi =





[¬In(f, /tmp) ∨ ¬T (f, PS)],
[¬In(a.ps, /tmp) ∨ ¬T (a.ps, PS)],
[¬In(b.ps, d) ∨ ¬T (b.ps, PS) | ¬(d = /ps)]

Related Work

We have already briefly discussed the work of (Golden,
Etzioni, & Weld 1994; Etzioni, Golden, & Weld 1997;
Golden 1998) in the introduction. PUCCINI ?? has a
richer action and goal languages, handles sensing ac-
tions and execution. But due to the incompleteness of
the LCW reasoning, it is incomplete even when it does
no sensing.

Conformant Graphplan (Smith & Weld 1998) and
SGP (Weld & Anderson 1998) are propositional open
world planners that consider every possible world and
thus rely on the domain of objects being sufficiently
small.

In another related work, Levy (Levy 1996) presents
a method for answer-completeness, which determines
whether the result of a database query is correct when
the underlying database is incomplete. For this work,
the database is relational and incompleteness means
that it may be missing tuples. The incompleteness
is expressed with LC constraints, which are based on
LCWs but which are considerably more expressive. In
fact, Levy’s LCs can easily represent the information
in LCWs with exceptions, which is roughly the expres-
sive power of ψ-forms. (Friedman & Weld 1997) ex-
pands on (Levy 1996) with a richer set of LC con-
straints and an algorithm that determines whether a
given information-gathering plan subsumes another.

Both of these works address the answering of queries
in an unchanging database. They do not,however,
address a changing world, much less the planning of
an agent to change it.Also, PSIPLAN needs several

operations—e.g., entailment, e-difference and image—
for planning that do not arise when only answering
queries.

Conclusions and Future Work

We have presented PSIPOP, a sound and complete par-
tial order planning algorithm that does not make the
closed world assumption and that can represent par-
tially closed worlds. The key idea is the use of ψ-
forms to represent quantified negative information and
to integrate ψ-forms into POP such that it adds only
polynomial cost algorithms. We thus argue informally
that, even with our expanded representation, we can
keep the complexity of planning within NP if we have
a finite language and if we bound the length of plans.
We have developed an extended formalism and plan-
ning system PSIPLAN-S, that uses an extension of the
PSIPOP algorithm to handle information goals, sens-
ing actions, information loss, conditional effects and
execution. The system has been implemented in Com-
mon Lisp and has performed successfully on numerous
examples. The extension of the presented algorithm to
a lifted version with conditional planning and execu-
tion is straightforward.

Future work is already in progress. We will con-
tinue to explore richer representations for ψ-forms. We
will also incorporate into the formalism actions that
both sense and change the world. We are investigating
methods for efficient integration sensing, conditional
planning and plan execution. We will also examine
application of PSIPLAN to SAT planning (Kautz &
Selman 1996).

References

Babaian, T., and Schmolze, J. G. 1999. PSIPOP:
Planning with sensing over partially closed worlds
. Extended version of the paper that appears in
the Notes for 1999 AAAI Spring Symposium on
Search Techniques for Problem Solving under Un-
certainty and Incomplete Information. Available from
http://www.eecs.tufts.edu/ tbabaian.

Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh,
N.; and Williamson, M. 1992. An Approach to Plan-
ning with Incomplete Information. In Proceedings of
the Third International Conference on Principles of
Knowledge Representation and Reasoning (KR-92),
115–125.

Etzioni, O.; Golden, K.; and Weld, D. 1997. Sound
and efficient closed-world reasoning for planning. Ar-
tificial Intelligence 89(1–2):113–148.

Friedman, M., and Weld, D. S. 1997. Efficiently Ex-
ecuting Information-Gathering Plans. In Proceedings

of the Fifthteenth International Joint Conference on
Artificial Intelligence (IJCAI-97).

Golden, K.; Etzioni, O.; and Weld, D. 1994. Om-
nipotence Without Omniscience: Efficient Sensor
Management for Planning. In Proceedings of the
Twelfth National Conference on Artificial Intelligence
(AAAI-94), 1048–1054. Seattle, WA: American As-
sociation for Artificial Intelligence.

Golden, K. 1998. Leap Before You Look: Informa-
tion Gathering in the PUCCINI Planner. In Artifi-
cial Intelligence Planning Systems: Proceedings of the
Fourth International Conference (AIPS-98), 70–77.

Kautz, H., and Selman, B. 1996. Pushing the En-
velope: Planning, Propositional Logic, and Stochas-
tic Search. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence (AAAI-
96), 1194–1201. Portland, OR: American Association
for Artificial Intelligence.

Krebsbach, K.; Olawsky, D.; and Gini, M. 1992.
An Empiracal Study of Sensing and Defaulting in
Planning. In Artificial Intelligence Planning Sys-
tems: Proceedings of the First International Confer-
ence (AIPS-92), 136–144.

Levy, A. 1996. Obtaining Complete Answers from
Incomplete Databases. In Proceedings of the 22nd
VLDB Conference.

McAllester, D., and Rosenblitt, D. 1991. Systematic
Nonlinear Planning. In Proceedings of the Ninth Na-
tional Conference on Artificial Intelligence (AAAI-
91), 634–639.

McCarthy, J., and Hayes, P. J. 1969. Some Philosoph-
ical Problems from the Standpoint of Artificial Intel-
ligence. In Meltzer, B., and Michie, D., eds., Machine
intelligence 4. New York: American Elsevier.

Peot, M. A., and Smith, D. E. 1992. Conditional
Nonlinear Planning. In Artificial Intelligence Plan-
ning Systems: Proceedings of the First International
Conference (AIPS-92), 189–197.

Scherl, R. B., and Levesque, H. J. 1997. The Frame
Problem and Knowledge-Producing Actions. Submit-
ted to Artificial Intelligence..

Smith, D., and Weld, D. S. 1998. Conformant Graph-
plan. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI-98).

Weld, D. S., and Anderson, C. R. 1998. Extending
Graphplan to Handle Uncertainty and Sensing Ac-
tions. In Proceedings of the Fifteenth National Con-
ference on Artificial Intelligence (AAAI-98).

