
 Handout 8 cs180 - Programming Fundamentals –Summer’21 Page 1 of 5

 1

Handout 8

Defining classes

Class is a type of a non-primitive value (called object). Class definition provides a template for
creating objects of that class.

• Each object has attributes (data) and operations (behaviors) associated with it.

♦ An object’s attributes are its instance variables.
♦ An object’s operations are its instance methods.

UML (Unified Modeling Language)

 Example: The Employee class Two Employee objects

The instance methods would return the values based on the calling object’s data, e.g.

employee1.getPayRate()
 would return 17.45
employee2.getPayRate()
 would return 22.0

Class Name

Attributes
(a.k.a. instance variables,

fields or properties)

Method Names

CLASS Employee

String name
double payRate
double hours

getName()
getPayRate()
getUnpaidHours()
incrementHoursBy(double hrs)
amtDue()
printEmployeeCheck(String
filename)

employee1

name: Deborah Stone
payRate: 17. 45
hours: 10

getName()
getPayRate()
getUnpaidHours()
incrementHoursBy(hrs)
amtDue()
printEmployeeCheck(String
filename)

employee2

name: George Clark
payRate: 22.00
hours: 2

getName()
getPayRate()
getUnpaidHours()
incrementHoursBy(double hrs)
amtDue()
printEmployeeCheck(String
filename)

 Handout 8 cs180 - Programming Fundamentals –Summer’21 Page 2 of 5

 2

Example: BankAcoount class
/* A class definition consisting of two instance vars
 */
public class BankAccount {
 // instance variables
 public double balance;
 public String accountID;
}

Class that uses BankAccount
/* * Example: create an object, access its public instance variable
 */
public class BankAccountDemo {

 public static void main(String[] args) {

 // create an object of class BankAccount
 BankAccount myAccount = new BankAccount();
 BankAccount joeAccount = new BankAccount();

 myAccount.balance = 500;
 myAccount.accountID = "T3849-55";

 joeAccount.balance = 300;
 joeAccount.accountID = "HGF-4565";

 System.out.println(myAccount.balance);
 System.out.println(joeAccount.balance);
 }
}

Instantiation: Creation of an object from a class.

• Create new objects of a class:

♦ Use the keyword new followed by the name of the class. BankAccount
myAccount = new BankAccount();

BankAccount() – is called the default constructor.

Instance variables
 Are accessible (i.e. can be used) in every instance method of the same class.

Public versus private instance variables:
Public instance variables can be accessed directly by name the outside of instance methods of
their class, as shown:

myAccount.balance = 500;

Private instance variables cannot be accessed from outside of instance methods of their class.
Proper design: Define data attributes as private variables

 Only methods of that class can access those attributes.
 Protects the data values from users of that class
 Only the programmer can control how they can be modified.

 Handout 8 cs180 - Programming Fundamentals –Summer’21 Page 3 of 5

 3

Define operations on that class as public methods - available to users of the class.

What is this?

 The calling object (i.e. the object that invoked the instance method) is passed to the
instance method as an implicit parameter. Keyword this is used within an instance
method to refer to the calling object.

 Keyword this can be omitted whenever there are no local variables or parameters
with the name that match the name of an instance variable, but is often used for
clarity to distinguish instance variables from other variables.

Encapsulation, or information hiding:
• Ability to hide data and behaviors within an object so that only that object can access and

change them. For BankAccount class:
 instance variable: balance declared private

declared public :
 accessor methods: getBalance , getAccountID
 mutator method: deposit, setAccountID

/* A class definition consisting of a single instance var */
public class BankAccount {

 // instance variable
 private double balance;
 private String accountID;

 // mutator method deposit
 public void deposit(double amount) {
 /* increment balance by amount passed to method */
 if (amount > 0)
 this.balance += amount;
 }

 // accessor method getBalance
 public double getBalance() {
 /* pass back account balance */
 return this.balance;
 }

 // accessor method getAccountID
 public String getAccountID() {
 /* pass back account balance */
 return this.accountID;
 }

 // mutator method setAccountID
 public void setAccountID(String id) {
 /* pass back account balance */
 if (id.length() != 0)
 this.accountID = id;
 } }

 Handout 8 cs180 - Programming Fundamentals –Summer’21 Page 4 of 5

 4

/* * Example: create an object, access its public instance variable
 */
public class BankAccountDemo {

 public static void main(String[] args) {

 BankAccount myAccount = new BankAccount();

 // The foll. would not work because balance is private
 // myAccount.balance = 500;
 // myAccount.accountID = "ABC-345"
 // Instead, must use the mutator methods to set balancea and
accid
 myAccount.setAccountID("ABC-345");
 myAccount.deposit(500.0);

 //System.out.println(myAccount.balance); doesn’t work
 // Instead, use the accessor methods
 System.out.println(myAccount.getAccountID());
 System.out.println(myAccount.getBalance());

 }
}

Practice Problem:

1. Add instance method withdraw to the BankAccount class. The method should be passed the
amount of withdrawal as a parameter. If the amount is less or equal to the balance of the calling
object, then the balance instance variable should be decreased by the amount of withdrawal.
Otherwise, the method should leave the balance variable unchanged and should display a message
stating there are no sufficient funds for the withdrawal.

2. Test the developed method by adding appropriate calls to the BankAccountDemo’s main method.

The toString() method:
• All classes include a toString() method

♦ returns a string representation of the class.
♦ Defined in Java’s Object class

• If the programmer doesn’t provide one, then Java will provide:
♦ The name of the object’s class and that object’s address in memory.

Example: if add the following code to the UseBankAccount class:

System.out.println(myAccount);

Something like the following will print:

BankAccount@7307ec83

User-defined toString() methods:

♦ Define a toString() method for each class. The value returned must be a String.

 Handout 8 cs180 - Programming Fundamentals –Summer’21 Page 5 of 5

 5

 public String toString() {
 return "Account #" + this.accountID +
 " has balance " + this.balance;
 }

• Use the println() method with an object reference to invoke the toString() method

for that object.

Practice Problem:

3. Implement Employee class depicted in the diagram on the first page. It should include
• Private instance variables to represent employee’s name (name), hourly pay rate

(hourlyPayRate) and number of hours for which the pay is due (hours).
• Public instance methods to

o setName(String empName)
o setPayRate(double payRate)
o toString()
o Accessor methods for all three variables

o incrementHoursBy(double hrs)

 that will increase the employee’s number of hours by the value

passed as a parameter, in case the parameter is a positive value

o amtDue()

 that will calculate and return the amount due to the employee for

the hours worked

o printEmployeeCheck(String filename)

 that will create a file NAME-CHECK.txt with the following

content

Pay to: EMPLOYEE NAME
Amount: AMOUNT DUE

 set the instance variable hours to 0.

Test Employee class, as you develop it:

• create two Employee type objects and initialize them with data using mutator
methods

• call all developed methods to verify their correct behavior

