Handout 6 ¢s180 - Programming Fundamentals —Summer’21 Page 1 of 4

Handout 6

File Input/Output: File, PrintWriter, FileWriter and Scanner classes.

In Java file i/o is supported by a wide variety of classes for a variety of specific purposes.

We will use:
Input (Read) — use Scanner class
Output (Write/Append) - PrintWriter, FileWriter

File Output:
e Create a PrintWriter object, by passing it a String with a filename (absolute

or relative).

+ PrintWriter: enables writing values of any type using print(),
printIn() methods

Must import java.io.*;

Must be used within a try block with a catch clause, otherwise get a syntax
error- Unhandled Exception, since PrintWriter constructor throws a
FileNotFoundException
Example: Create a new file called myfi le.txt and write a few lines into it.

/* MWriteFile.java - Demonstrates use of PrintWriter for simple

file output */
public class WriteFile {
public static void main (String[] args) throws FileNotFoundException{

//Create a PrintWriter object to write to myfile.txt
// Opens file "myfile.txt" for writing
// if myfile.txt does not exist in current directory
//- create a new file. If exists - contents will be erased.
PrintWriter pw = new PrintWriter("myfile.txt");
pw.println("This is a new text file.");
// writes into file associated with pw
for (int 1 = 1; i <= 13; i++){
pw.print(i+", ");
}

pw.close();

1}

Handout 6 ¢s180 - Programming Fundamentals ~Summer’21 Page 2 of 4

To append instead of overwriting, use a slightly different mechanism: create a
PrintWriter from a FileWriter as shown:

// open fTile for appending - second param must be true
FileWriter fw = new FileWriter("myfile.txt", true);
PrintWriter pw = new PrintWriter(fw);

//AppendFile.java - append to a file
import java.io.*;

public class AppendFile {
public static void main (String[] args) throws IOException{

// open file for appending - second param must be true
FileWriter fw = new FileWriter("myfile.txt", true);
PrintWriter pw = new PrintWriter(fw);

pw.println("This line is added to an existing file.");
pw.close();

File Input: Use Scanner class to read from file.
Scanner — a class for text input processing from keyboard, file, or string.
Must import java.util.Sacnner.

Constructing a scanner from file stringFi leName:
0 Scanner anyName = new Scanner (new File (stringFileName)
):
To read input from the keyboard:
0 Scanner anyName = new Scanner (System.in);

Scanner instance methods:

anyName.nextInt(); - returns an integer. Skips all white space (space, tab, end-of-
line characters) that appear before the integer.

anyName.nextDouble(); - double

anyName .next() ;- returns the next token (), i.e. the String value consisting of
characters up to, but not including the next white space or end of line (or another
specified delimiter).

Essentially, reads one word, where word is a sequence of non-white space characters.
anyName.nextLine(); - returns the String value consisting of characters up to, but not
including the end of the current line.

For checking if the input stream contains unread data:
anyName . hasNext() ;
anyName . hasNextLine();

-return a Boolean value designating if more tokens or lines are left.

Handout 6 ¢s180 - Programming Fundamentals —Summer’21 Page 30f4

Example: Using Scanner with File to read line by line

/** Read fTile line by line */

import java.io.File;

import java.io.FileNotFoundException;
import java.util.Scanner;

public class ReadFileLineByLine {
public static void main(String[] args) throws FileNotFoundException {
String line;

File inputfile = new File("samplelnput.txt™);

Scanner input = new Scanner(inputfile);

// read one line at a time

while(input.hasNextLine()) // verify there are more lines
// or will get an exception

{

line = input.nextLine();
System.out.printIn(” read <" + line + ">");

}

// release resources to operating system when done
input.close();

Example: Using Scanner with File to parse into words, separated by line breaks and
commas:

while(input.hasNext()) // verify there are more lines
// or will get an exception

{
line = input.next);
System.out._printIn(’” read <" + line + ">");
3
Output:
Input file contents: Output from first segment Output from second
(using nextLine()) segment (using next())
One, two, three read <One, two, three> read <One,>
read <>
read <two,>
45 4.67 four read <45 4.67 four> read <three>
read <45>
read <4.67>

read <four>

Handout 6 ¢s180 - Programming Fundamentals ~Summer’21 Page 4 of 4

Practice problems:

File menuitems.csv contains data on restaurant menu items listed one dish per line, with the
type of the dish, its name and its price separated by commas, s shown below.
Create programs for each of the problems below

appetizer,Bouillon in cup,6.7
appetizer,Queen olives,8

entrée,""Panfish, Meuniere",25
side-dish,German fried potatoes,5
entrée,Ribs of prime beef,19
dessert,Assorted cakes,15

entrée,""Scollops en caisse, Supreme',32
entrée, Irish stew,28

appetizer,”Marrow on toast, Bordelaise™,18
salad,Lobster salad,14

1. Ask the user to enter dish type and calculate the average price of that type of a dish.

2. Ask the user to enter dish type and display the lowest-priced and the highest-priced dish of
that type.

3. Ask the user to enter dish type and create a file into which you will record all information
for the dishes of that type.

4. Create text a file that contains a menu, listing items of each type grouped together under an
appropriate title as follows

Appetizers
Bouillon in cup $6.70
Queen olives $8.00
Marrow on toast, Bordelaise $18.00

Entrée

Panfish, Meuniere $25.00

Ribs of prime beef $19.00

Additional challenges:
= Make it look the best you can.
= Make the code as free of hardcoded values as you can.

