CS180, end of the course practice problems

1. What is printed when the following program is run?

```java
public class Example {
    public static void main (String [] args) {
        String word = "lurcvkty";
        char[] array = new char[word.length()];

        char achar = '*';
        for (int j = 0; j < array.length; j++) {
            array [j] = word.charAt(j);
        }

        System.out.println("before:");
        for (int j = 0; j < array.length; j++) {
            System.out.print(array[j]);
        }
        System.out.println();
        aMethod (array, achar);

        System.out.println("after:");
        for (int j = 0; j < array.length; j++) {
            System.out.print(array[j]);
        }
        System.out.println();
    }
}

public static void aMethod (char[] arr, char ch) {
    int place = arr.length -2;
    for (int i = arr.length - 2; i > 1; i = i -2) {
        arr[i] = ch;
    }
}
```

Output:
Objects, Classes, and Arrays

2. The *Coins* class has the following instance variables:

```java
public class Coins {
    private String type;   // penny, nickel, dime, or quarter. Lowercase!
    private int value;     // in cents - 5 for nickel, 10 for dime, etc.
    private int count;     // number of coins of that type
}
```

a. Write an instance method for the *Coins* class called `setValue()` that sets the `value` instance variable of the *Coins* object that invokes it to 1 for a penny, 5 for a nickel, 10 for a dime, or 25 for a quarter, as identified by the `type` instance variable of the invoking object. You may assume that the value of the `type` instance variable is always stored as a lowercase value.

d. Write a 2-arg constructor for the *Coins* class that sets the `type` instance variable to the lowercase equivalent of the first argument, the `count` instance variable to the second argument, and uses the `setValue()` instance method from part a to set the `value` instance variable.

c. Write a `getValue()` accessor method for the *Coins* class that returns the total value, in change, of the *Coins* object passed to it. For example, if a *Coins* object with a `type` instance variable of “nickel” and a `count` instance variable of 3 invoked this method, then a value of 15 should be returned.
d. Complete the println code in the following UseCoins class so that the value of coin1 is printed using the getValue() accessor method from part c.

```java
public class UseCoins {
    public static void main(String[] args) {
        coin1 = new Coins("nickel", 3);
        System.out.println("Total value = " + ________________);
    }
}
```

e. The Wallet class defines an array of Coin objects. Add a static method to this class called totalValue() that is passed an array of Coin objects (as shown) and returns the total value, in change, of all of the objects in that array.

```java
public class Wallet {
    public static void main(String[] args) {
        Coins[] coins = new Coins[4];
        coins[0] = new Coins("nickel", 14);
        coins[1] = new Coins("penny", 12);
        coins[2] = new Coins("quarter", 10);
        coins[3] = new Coins("dime", 4);
        System.out.println("Total value = " + totalValue(coins));
    }
    // add code here
}
```
3. Define a new class Course to represent course information in the following way: each course object is characterized by a **name**, **maximum enrollment** and is assigned a **classroom type**, that is either “computerized” or “regular”.

Your class must define a separate instance variable to represent **name**, **maximum enrollment** and **classroom type**.

You do not need to define any methods, but you have to define a 2-arg **constructor** that is passed course name and maximum enrollment. The constructor should assign the values to the instance variables representing course name and maximum enrollment to the values passed in through the parameters, and should assign the value of instance variable representing the classroom type according to the following rule: all classes with a name that starts with “CS” or “IT” must be assigned a computerized classroom, all others – a regular classroom.

Write a code segment that declares a variable of class type Course, creates an object of class Course representing “CS180” with maximum enrollment of 25 students.

Write a code segment that declares a 15-element array of type Course, and assigns the last element of the array to an object representing “HI130” with enrollment of 30 students.
4. Write a static method called `aveArray` that is passed an integer array as an input. It must first determine the average of the values in the array. Then it determines how many values in the array are **greater than the average**, and returns a new array containing only those values.

For example, if passed the following array:

\[\{13, 10, 15, 11, 12\}\]

then the array to be returned would contain: \(\{13, 15\}\) (since the average is 12.2)