

RealViz – Visual Methods For Real-life Systems Research Group

Jennifer Xu

Wendy Lucas (CIS)

Tamara Babaian PI (CIS)

Alina Chircu (IPM)

Nathan Carter (MATH)

Roland Hubscher (IDCC)

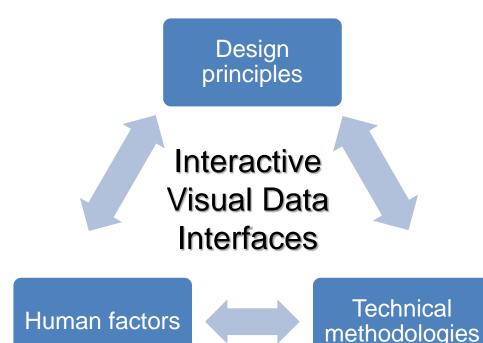
Sandeep Purao (IPM)

and students

RealViz Talk Series 2016-2017 videos online

cis.bentley.edu/realviz/talk.html

- 1. Matthew Brehmer, Microsoft Research
- 2. Martin Wattenberg, Google's "Big Picture" data visualization group
- 3. John Stasko, Georgia Institute of Technology
- 4. Remco Chang, Tufts University



Examples and Motivation

- Interactive data visualizations are now widely available, e.g.
 - Educational Attainment per School District in US (NYTimes)
 - d3 gallery
 - Google Maps
- Visual approaches to user interfaces remain scarce in the workplace
- Studies show that users report employing useful visualizations decreases system complexity
- We investigate **developing and employing interactive visual interfaces within real-life (business information) systems** to enhance software system effectiveness, lower users' perceptions of system complexity and increase user productivity.
- "We don't just need these systems to be technically better than the alternatives we need them to be more user-friendly." Fidelity chairman and CEO Abigail Johnson at a New York blockchain conference, May 2017

Research program

Goal: Go beyond just an *interactive display* of data, but also serve as visual interface to system function, enabling users to *act* on the data.

To be useful (not just "eye candy"), visualizations need to be **effectively embedded into the system**, i.e. be designed to fit a specific task context & user goals.

This means we must

- Design/Select an appropriate visual representation
- 2. Select an effective interaction model
- 3. Connect the visualization with the rest of the system components: data, functions.

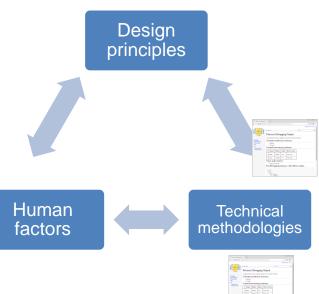
plus:

- ⇒ Evaluate with users
- ⇒ Formulate design principles

Contributions

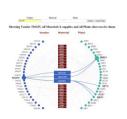
- Models
 - Visual design
 - Interaction
- Methods
 - Technical
 - Procedural
- Design principles

RealViz Projects 2016-2017

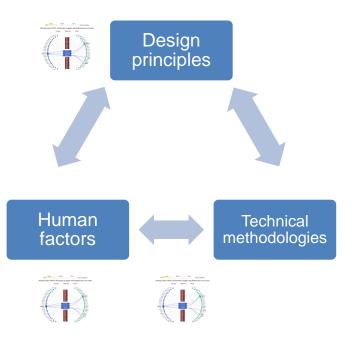


Visual Design Patterns Catalog

- **Purpose:** To help practitioners in selecting an appropriate visual representation and interaction model
- **Goal:** create a new type of a *self-organizing* catalog of visual design patterns that is *searchable* and *navigable* and provides *recommendations* based on a rich set of parameters, including:
 - the description of the design pattern,
 - user goal,
 - and history of simultaneous pattern access by the user performing the search, and other users.

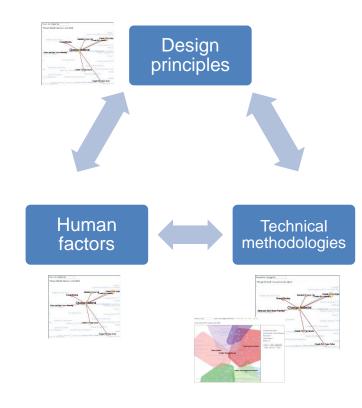

A prototype is under development, implemented as a WikiMedia instance.

• Contact faculty: Carter, Hübscher

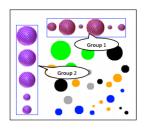


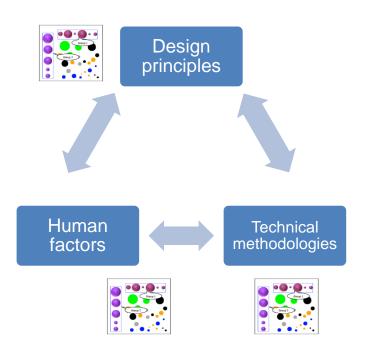
Association Map – interactive visual alternative to tables

- **Purpose:** To help enterprise system users explore and review associations between data items, select items matching specified criteria
- Several iterations of
 - Design and implement
- Evaluate with users in a side-by-side comparison with tabular interfaces in SAP, Oracle reports
 - Analyze and explain user testing results
 - Formulate theoretically justified and empirically supported design principles
 - Contact faculty: Babaian, Lucas, Chircu


Dynamic Task Map – DTMi an informed task navigation interface

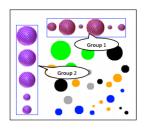
- **Purpose:** To help enterprise system users locate and navigate to desired functionality
- An interactive graph, derived from usage logs, showing
 - Tasks that were actually performed (according to the system log),
 - Connections to *related* tasks i.e. tasks that co-occur or follow
 - (Version DTMi) Additional task info shown alongside the main display

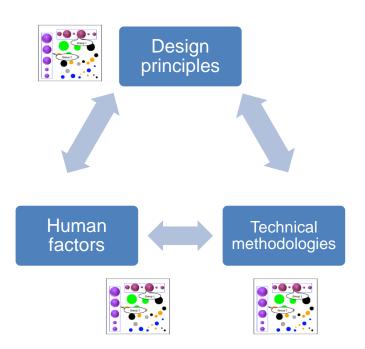

A new navigation tool, outperformed SAP menu and search mechanism in comparison user-tests.


• **Contact faculty:** Babaian, Lucas

VisConstraints - techniques for easy layout of graphical objects

- Purpose: develop techniques for helping users specify force-directed and other constraint-based layouts.
- A language and graphical user interface for
 - Describing layout of graphical objects created from data stored in a database
 - Specifying and fine-tuning constraintbased layout options using a graphical user interface
 - Tested with users




• Contact faculty: Lucas

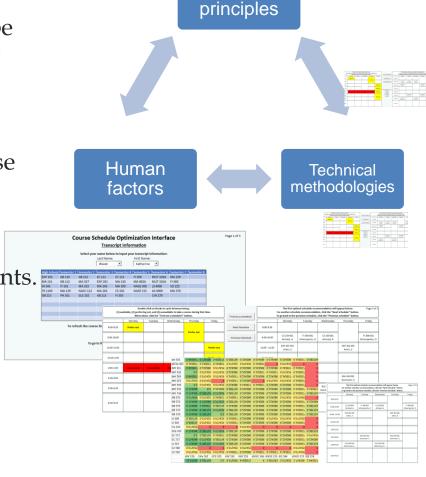
VisConstraints - techniques for easy layout of graphical objects

- Purpose: develop techniques for helping users specify force-directed and other constraint-based layouts.
- A language and graphical user interface for
 - Describing layout of graphical objects created from data stored in a database
 - Specifying and fine-tuning constraintbased layout options using a graphical user interface
 - Tested with users

Contact faculty: Lucas

Visual Interfaces for Course Registration - ClassGrid

Design


Purpose: Demonstrate how common task interfaces (e.g. Course registration) can be designed using visual representations for interaction and data manipulation.

Honors Project by K. Wood

A prototype interface implementing course ranking and selection based on

- students' major,
- time preferences,
- course history of this and similar students. Implemented using Excel, Visual Basic.

Contact faculty: Carter

Drug Users' Life Trajectory

(with M. Boeri, Sociology)

Purpose: present several important parameters of personal history of a drug user alongside the history of drug use, facilitating pattern detection and analysis.

Independent Study Project by G. Ligure

An enhanced interactive version of a visualization from: M. Boeri et al., Drug use trajectory patterns among older drug users. *Substance Abuse and Rehabilitation*, 2011

Design principles

Human factors

Technical methodologies

Contact faculty: Babaian

Challenges

- implementation
 - requires highly developed technical skills and time
 - need qualified and committed students for long-term projects
 - need server space dedicated to faculty development projects (CIS has some, but faculty need more)
- evaluation
 - A/B comparison of novel approaches with traditional ones is difficult
 - need to evaluate in a with experienced users, yet access to domain experts is difficult, requires industry partnerships
- transfer solutions to practice
 - access to interested industry partners
- publishing
 - between too applied and too technical
 - tie to real industry experiences/evaluations helps a great deal