
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 10, NO. 1, MARCH 2009 83

Topological Analysis of Criminal Activity Networks:
Enhancing Transportation Security

Siddharth Kaza, Jennifer Xu, Byron Marshall, Member, IEEE, and Hsinchun Chen, Fellow, IEEE

Abstract—The security of border and transportation systems
is a critical component of the national strategy for homeland
security. The security concerns at the border are not indepen-
dent of law enforcement in border-area jurisdictions because the
information known by local law enforcement agencies may pro-
vide valuable leads that are useful for securing the border and
transportation infrastructure. The combined analysis of law en-
forcement information and data generated by vehicle license plate
readers at international borders can be used to identify suspicious
vehicles and people at ports of entry. This not only generates
better quality leads for border protection agents but may also
serve to reduce wait times for commerce, vehicles, and people as
they cross the border. This paper explores the use of criminal
activity networks (CANs) to analyze information from law en-
forcement and other sources to provide value for transportation
and border security. We analyze the topological characteristics of
CAN of individuals and vehicles in a multiple jurisdiction scenario.
The advantages of exploring the relationships of individuals and
vehicles are shown. We find that large narcotic networks are
small world with short average path lengths ranging from 4.5
to 8.5 and have scale-free degree distributions with power law
exponents of 0.85–1.3. In addition, we find that utilizing infor-
mation from multiple jurisdictions provides higher quality leads
by reducing the average shortest-path lengths. The inclusion of
vehicular relationships and border-crossing information generates
more investigative leads that can aid in securing the border and
transportation infrastructure.

Index Terms—Border and transportation security, homeland
security, social network analysis.

I. INTRODUCTION

A NATIONAL strategy for homeland security [1] was
developed after the September 11th terrorist attacks and

presented in a report published by the Office of Homeland
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Security in July 2002. The report emphasizes “Border and
Transportation Security” and “Protecting Critical Infrastruc-
tures and Key Assets” as two of the six critical mission areas.
Transportation systems (both domestic and transnational) have
been identified as key infrastructures that need to be protected.
In addition, the report calls for the creation of “smart bor-
ders” that provide “greater security through better intelligence,
coordinated national efforts, and unprecedented international
cooperation [1].”

Information needed for securing transportation systems ex-
ists in multiple agencies that frequently do not share infor-
mation horizontally (across the same level of government)
or vertically (across local, state, and federal government). If
homeland-security-related information were efficiently shared,
then border and infrastructure protection would be benefited.
Information sharing can also help improve traffic flow at the
border while balancing security concerns. The identification of
suspect vehicles at the border could be enhanced by combining
it with the millions of relationships recorded between people,
places, and vehicles in law enforcement records of border-
area jurisdictions. Similarly, local law enforcement information
would be of benefit to the Transport Security Administration
(TSA) in protecting transportation infrastructures. Criminal
activity networks (CAN) can be used to analyze information
from multiple sources like law enforcement and transportation
systems like license plate readers.

A CAN is a network of interconnected people (known crimi-
nals), vehicles, and locations based on law enforcement records.
The networks can be augmented with data from sources like
transportation systems and motor vehicle division data. These
networks allow us to analyze and visualize information that is
helpful for identifying suspicious vehicles and people at the
border or around critical infrastructures. CANs may contain
information from multiple sources and be used to identify
relationships between people and vehicles that are unknown to a
single jurisdiction. As a result, cross-jurisdictional information
sharing and triangulation can help generate better investigative
leads and strengthen legal cases against criminals.

CANs can be large and complex (particularly in a cross-
jurisdictional environment) and can be better analyzed if we
study their topological properties. Topological properties de-
scribe the network as a whole and help us better understand
its governing mechanisms. The topological properties can also
be used to quantify the advantages of data sharing to law
enforcement and transportation security. In addition, under-
standing the properties of CANs can help design better analysis
tools to assist in identifying potentially dangerous vehicles
and people. In this paper, we study the topological properties
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of and explore important research questions related to cross-
jurisdictional CANs.

1) What are the topological characteristics of CANs?
2) How do cross-jurisdictional data affect the topological

characteristics of CANs?
3) How do CANs grow when data from multiple jurisdic-

tions are combined?
4) How does the addition of multiple types of entities (e.g.,

vehicles and people) affect the topological characteristics
of CANs?

In Section II, we discuss background information and previ-
ous studies. Section III presents the research testbed and design.
Section IV presents the analysis of CANs using information
from a single jurisdiction. Section V analyzes their character-
istics in multiple jurisdictions. Section VI discusses the proper-
ties of CANs with vehicles and people, and the advantages of
exploring the criminal links of vehicles. We conclude this paper
in Section VII and present future directions of this research.

II. LITERATURE REVIEW

This section progresses from the integration of information
to previous studies of criminal and other complex networks. It
explains the common topological measures and discusses the
evolution of networks. Previous studies on bipartite graphs are
also presented.

A. Integration of Information From Multiple Sources

Cross-jurisdictional CANs contain relationships between en-
tities like vehicles and people that are extracted from many
data sources. To triangulate information about an entity, it is
necessary to reconcile all the instances of the entity across
data sets, which is a challenging task. Matching of entities
and their relationships is a task that is hampered by problems
that include [2] name differences (similar entities in different
databases have different names), missing and conflicting data
(incomplete data or different values in different sources), and
object identification (lack of global identifiers).

We use the BorderSafe information sharing and analysis
framework [3] for accessing information from multiple data
sets. The key to the framework is the identification of several
classes of data; the two important classes are base incident data
and supplementary contact data:

1) Base incident data include information that expresses
the relationships between individuals, vehicles, locations,
and other such entities that are present in law enforcement
incident records. For example, two individuals are related
if they are partners in a crime.

2) Supplementary contact data include additional informa-
tion of an annotative nature on criminal entities found in
the base data. The supplementary data identify features of
entities, whereas the base data express the relationships
between entities. An example of supplementary data is
border-crossing activity records for vehicles.

To facilitate network analysis, the base data obtained from
each jurisdiction are mapped to a global schema [3]. The

individuals in the base data are reconciled using first name,
last name, and date of birth. The vehicles are reconciled using
license plate numbers and issue authorities. The framework
allows us to extract the relationships between individuals and
vehicles that are amenable to CAN analysis. It also facilitates
the annotation of networks with border-crossing information
that can be used to identify suspicious vehicles crossing the
border.

B. Complex Networks

The complex networks of individuals and other entities have
traditionally been studied under the random graph theory [4].
However, later studies suggested that real-world complex net-
works may not be random but may be governed by certain
organizing principles. This prompted the study of real-world
networks. These studies have explored the topology, evolution
and growth, robustness and attack tolerance, and other prop-
erties of networks. Three broad models of network topologies
have emerged [4]: random graphs, small-world networks, and
scale-free networks. Random graphs are networks in which any
two nodes are connected with a fixed probability p; thus, edges
are randomly distributed among nodes of the network. Small-
world networks are not random networks and have relatively
small path lengths despite their often large size [5]. In scale-
free networks, the degrees (number of edges) of nodes follow
a power law distribution [6]. More details on the topological
characteristics of small-world and scale-free networks are dis-
cussed in the next subsection. Some of the networks that have
been studied include the World Wide Web [7], [8], cellular
and metabolism networks [9], and coauthorship networks [10].
These networks were found to have similar topological, evolu-
tionary, and robustness characteristics [4]. They were found to
be predominantly small world and scale free.

The structure of criminal networks has been studied using
manually produced link charts [11] to depict relationships
between individuals, vehicles, and locations. The topological
characteristics have also been explored using social network
analysis [12]–[14], shortest path algorithms [15], and manual
mapping [16]. Several computerized tools like Netmap,
Analyst’s Notebook, and COPLINK’s visualizer [17]–[19]
have also been developed to support network representations
of criminal activity information. To understand the topological
properties of CANs and how they vary in different contexts
could help investigators more efficiently perform their jobs.

C. Topological Properties

The topological properties of networks help us study the net-
work as a whole instead of studying the individual constituents.
Three concepts dominate the statistical study of the topology of
networks: small world, clustering, and degree distribution [4].
These concepts have important implications in the domain of
security and law enforcement.

Small World: The small-world concept is based on the fact
that large networks often have small path lengths between their
nodes. This is an important concept as it can depict the ease of
communications within a network. Communications can range
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from the spread of disease in human populations and spread
of viruses on the Internet to the passage of messages and
commands in a criminal network. A widely cited example of
a small-world network study is the “six degrees of separation”
study by psychologist S. Milgram, who concluded that there
was a path of acquaintances with a typical length of about six
between most pairs of people in the U.S. [20]. The small-world
property is measured by the average shortest-path length that
is obtained by averaging the shortest paths between all pairs
of nodes in a network [4]. For instance, the average shortest-
path length between two actors in a network of movie actors
(225 226 nodes) was found to be 3.65 [5]. The average shortest-
path length between coauthors in the MEDLINE collection
(1.5 million nodes) was found to be 4.6 [10]. We will be using
the actor network and the MEDLINE coauthorship network
as examples to explain more concepts later in this paper.
These and other examples of real-world networks show that the
small-world property appears to characterize most real-world
networks [4]. There has been research on the phenomenon that
leads to the short path lengths in real-world networks. It has
been suggested [21], [22] that shortcuts between nodes that
otherwise may not be connected reduce the average path length
in small-world networks. This is particularly true in social
networks where people are likely to have friends with other
individuals outside their immediate friend circle. The small-
world property is studied in CANs because it has implications
for the identification of important relationships involving suspi-
cious vehicles and individuals.

Clustering: Cliques that represent circles of friends and
acquaintances often form in social networks. For instance,
authors often collaborate with the same set of people in a
coauthorship network. Cliques also form in networks that do
not involve people, for example, related websites on the Web
often point to each other through hyperlinks. This inherent
tendency to cluster is quantified by the clustering coefficient
[5]. The clustering coefficient is measured by the ratio of the
number of edges that exist in a network to the total number of
possible edges [4]. Real-world networks tend to have relatively
high clustering coefficients as compared to random graphs. The
movie actors network had a clustering coefficient of 0.79 [5],
and the MEDLINE coauthorship network had a coefficient of
0.066 [10], both values are several orders of magnitude higher
than their random counterparts. The clustering coefficient in
criminal networks points to the tendency of individuals to
collaborate together and partner in crimes.

Degree Distribution: Nodes in a network have different
numbers of edges connecting them. The spread of node degrees
is given by a distribution function P (k), which gives the
probability that a randomly selected node has exactly “k” edges
[4]. The distribution functions of most real-world networks
follow the power law scaling with exponents ranging from 1.0
to 3.0 [4]. The movie actor network has a power law degree
distribution with an exponent of 2.3 [5]. The MEDLINE coau-
thorship network was found to have an exponent of 1.2 [10].
Degree distributions are studied in criminal networks because
high degrees of criminals may imply their leadership in the
network [15]. The degrees of nodes are also used to study the
growth and evolution of a network.

D. Evolving Networks

Most real-world networks, including CANs, are not static
and grow due to the addition of nodes and/or links. For instance,
the World Wide Web exponentially grows by the addition of
new web pages, and a coauthorship network grows by the
addition of collaborators. The growth leads to changes in
the topological characteristics of the networks. Barabasi and
Albert [4] identified two ingredients in the evolution of a scale-
free network: 1) Growth: Networks continuously expand by
adding new nodes; and 2) preferential attachment: New nodes
preferentially attach to nodes that are already well connected,
which is an effect called “rich-get-richer.” The preferential
attachment concept assumes that the probability that a new node
will connect to an existing node i depends on the degree of the
node i. The higher the degree of i, the higher the probability that
new nodes will attach to it. The functional form of preferential
attachment (

∏
(k)) for a network can be measured by observing

the nodes present in the network and their degrees at a particular
time t. After adding new nodes (time = t + 1), plotting the
relative increase as a function of the earlier degree gives the∏

(k) function [23]. Preferential attachment has been studied
for citation, and coauthorship networks, actor network, and the
Internet has been found to follow the power law distribution
[23], [24]. In other cases,

∏
(k) may linearly grow until a point

and then fall off. This usually happens at high degrees, implying
that high-degree nodes are unable to attract new nodes. For
instance, Newman [24] found that individuals with a large
number of collaborators in a coauthorship network did not
attract many new ones. These constraints on the growth of
networks exist in many real-world networks including criminal
networks [12], [25], [26].

The constraints on the number of links that a node can
attract may be due to aging or cost [25]. Since the growth of
the network may be over time, some high-degree nodes might
become too old to participate in the network (e.g., actors in a
movie network). It might also become too costly for a node to
attach to a large number of nodes (e.g., a router in a network
slows down when it has too many connections). The constraints
on growth may be domain specific and have been studied
in many domains. For instance, in plant–animal pollination
networks, some animals cannot pollinate certain plants; hence,
a link cannot be established [26]. This is an example of a cost
constraint. In criminal networks, trust may restrict the growth of
networks. Criminals and terrorists do not include many people
in their inner trust circle [12]. In addition, disruption might
restrict growth in criminal networks. Individuals may get jailed,
wounded, or killed and thus not contribute to the growth. They
may also “lay low” at certain times to escape the attention
of authorities. These unique properties make the growth of
criminal networks an interesting topic of study.

E. Bipartite Graphs

The CANs studied in this paper contain nodes like individu-
als and vehicles linked by police incidents. Each individual or
vehicle is related to an incident, and two individuals/vehicles
are linked if they are found in the same incident (more details
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TABLE I
KEY STATISTICS OF TPD AND PCSD DATA

TABLE II
SUMMARY OF BORDER-CROSSING INFORMATION

in Section III). These networks can be classified as bipartite
graphs. Bipartite graphs contain two kinds of entities as nodes,
and relationships only exist between different kinds of nodes.
Many social networks like collaboration networks of movie
actors, or authors, can be described as bipartite graphs [27].
Bipartite graphs are usually studied by projecting them to a
unipartite graph that contains one of the entities and transitive
relationships through the other entity. For instance, Watts and
Strogatz [5] projected a network between actors and movies to
a network between actors and actors by linking two actors who
acted in the same movie. Similarly, another study of the network
of directors on company boards projected a director and board
network to a network of boards by linking two company boards
together if they had common individuals on them [28]. We
study bipartite graphs of individuals and incidents by projecting
them to a network of individuals. Therefore, two individuals
are linked if they are related to the same incident. The same
concept is used to project networks of individuals and vehicles
to networks of individuals.

III. RESEARCH TESTBED AND DESIGN

The data sets used in this paper are available to us through the
Department of Homeland Security (DHS)-funded BorderSafe
project. To study CANs, we used police incident reports from
Tucson Police Department (TPD) and Pima County Sheriff’s
Department (PCSD) from 1990 to 2002. A summary of the data
we used is shown in Table I.

Border-crossing information that includes the license number
of vehicles with the date and time of their crossing, which is
provided by Tucson Customs and Border Protection (CBP), is
also included in the testbed. A summary of the border-crossing
data is given in Table II.

This testbed was used to extract narcotic networks that con-
sisted of vehicles and individuals as nodes and police incidents
as edges between them. Individuals were included as nodes in
the network if they were wanted, suspected, arrested, or had a
warrant for arrest in a narcotics crime. Hereafter, such persons
will be referred to as “suspects” in the crime. Vehicles were
included as nodes in the network if they had been involved with
a suspect in a narcotics crime. Two nodes were connected by an
edge if they were in the same incident involving a narcotics or
narcotics-related crime. An example of such a narcotic network
is shown in Fig. 1. The network depicts links between indi-
viduals (circles), vehicles (rectangles), and locations (triangles)

extracted from TPD and PCSD records; IT is also augmented
with border-crossing information of the vehicles. The CANs
used in this research do not include locations but resemble the
network in Fig. 1.

To address our research questions, we divided the study
into three parts. We first studied the characteristics of criminal
networks in a single jurisdiction. Second, we analyzed the
change in characteristics on combining data from multiple juris-
dictions. In addition, we studied the characteristics of networks
with multiple types of entities such as vehicles and individuals.

1) Characteristics of Criminal Networks in a Single Juris-
diction: The topological characteristics of narcotic networks
extracted from TPD and PCSD were separately analyzed. Basic
statistics such as size, number of links, size of giant (largest
connected component), and second largest component were cal-
culated. Small-world properties (clustering coefficient, average
shortest-path length, and diameter) and scale-free properties
(average degree, maximum degree, and exponent (γ) and cutoff
(κ) of the degree distribution) were calculated and analyzed.
This analysis aids in understanding the topological properties
of narcotic networks based on the activities recorded in police
records. In addition, the number of border-crossing vehicles
associated with the individuals in the network was also found,
which helps in identifying the criminal links of border-crossing
vehicles.

2) Cross-Jurisdictional CANs: To study the topological
characteristics of cross-jurisdictional CANs, we augmented
the narcotics network (N) from one jurisdiction (J1) with
information from the second jurisdiction (J2). To understand
the advantages of using information from multiple agencies, the
data in the second agency can be explored in two ways.

1) Adding edges to N : The second jurisdiction is used
to identify unknown associations between the nodes of
network N . The addition of incidents from J2 to the
network in J1 is expected to form previously unknown
associations (hidden links) among nodes in J1.

2) Adding nodes and edges to N : The second jurisdiction
can be used to identify previously unknown nodes asso-
ciated with the network N . The addition of individuals
from J2 to the network in J1 will identify the previously
unknown members of the narcotics network. The addition
of nodes to N also allows us to study the phenomenon of
preferential attachment in the narcotics network.

Both of the methods used to explore information in the
second jurisdiction highlight the advantages of sharing data.
With the addition of nodes and links from J2 to J1, we expect
that the giant component of the network from J1 will increase
in size. We also expect that the average shortest-path length of
the network in J1 will decrease due to the addition of shortcuts
between nodes.

The addition of nodes and edges from J2 to J1 can be treated
as the growth of the network. Previous studies have used the
preferential attachment measure to study the increase in the
number of nodes over time. We use the preferential attachment
measure to study the growth of the network over jurisdictions
instead of over time. This sheds light on how criminals commit
crimes in partnership with criminals in other jurisdictions. If the
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Fig. 1. Example of a narcotics CAN.

jurisdictions are geographically close or overlapping, individu-
als who commit more crimes in one jurisdiction will probably
commit more crimes in the second jurisdiction. We expect
this to be true in our data sets since Tucson, AZ (under the
jurisdiction of TPD), is located within Pima County (PCSD).

3) Networks With Multiple Types of Entities: To study
CANs as bipartite graphs, we define nodes as individuals or
vehicles and edges as incidents that link an individual to a
vehicle. This network is projected to a network of individuals
by drawing an edge between two individuals who are connected
through a narcotics crime to the same vehicle. This paper
explores the role of vehicles in a narcotics network. We expect
that the addition of vehicles will find the previously unknown
links between people already present in the network. It will also
help identify new members that were previously disconnected
from the network. As a result, we expect the size of the giant
component to increase and the average shortest-path length
to decrease. Augmenting the networks with border-crossing
information of vehicles can help identify the criminal links of
border-crossing vehicles.

IV. SINGLE JURISDICTION CRIMINAL NETWORKS

Table III presents the basic statistics of the narcotics net-
works extracted from TPD and PCSD’s records. A giant com-
ponent containing a majority of the nodes emerges from both
networks. This is common in other social and affiliation net-
works that have been studied before [10]. The giant component
in this case is a large group of individuals linked by narcotic
crimes. This has important implications for social networks as
the large size of the giant component coupled with short average
path lengths (shown in Table IV) implies that a majority of the
individuals in the network can easily be reached. In addition, we
find that the second largest component is significantly smaller,

TABLE III
BASIC STATISTICS OF NARCOTICS NETWORKS

TABLE IV
SMALL-WORLD PROPERTIES OF NARCOTICS NETWORKS

suggesting that other much smaller groups of people exist in
both jurisdictions. These smaller groups of criminals are likely
to get connected to the giant component as time progresses.

The small-world and scale-free properties of these and other
networks shown later are studied by using the giant component.
The small-world properties of both networks are shown in
Table IV.

The narcotics networks in both jurisdictions can be classified
as small-world networks since their clustering coefficients are
much higher than comparable random graphs, and they have
a small average shortest-path length (L) relative to their size.
Potential applications: The high clustering coefficient suggests
that criminals show a tendency to form circles of associates
who partner in crimes. According to domain experts, this is
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Fig. 2. Log–log plots of the cumulative degree (p(k)) versus the degree (k).
The insets are p(k) versus k. The solid line is the truncated power law curve.

TABLE V
SCALE-FREE PROPERTIES OF NARCOTICS NETWORKS

not unusual in narcotics networks, where individuals tend to
have circles of trust that include friends and family members.
This property is advantageous to law enforcement because it
helps them form strong conspiracy cases against members of
the group. A small L implies a faster flow of information
(e.g., news of police raids) and goods (e.g., drugs) in the
network. However, short paths tend to be advantageous for law
enforcement too. Investigators search for associations among
criminals to form a case against them. They suggest that shorter
association paths between criminals generate better and higher-
quality investigative leads [15].

Studies have suggested that the short path lengths in small-
world networks are due to the presence of shortcuts in the
network. Since the narcotics network has a short L, there must
be shortcuts between people in different groups. This suggests
that criminals in a narcotics network may also be committing
some crimes with people outside their group.

Fig. 2 shows a plot of the degree distributions of both
networks, and Table V presents their statistics.

The narcotics networks have degree distributions that follow
the truncated power law, which classifies them as scale-free
networks. This implies that a large number of nodes have low
degrees as shown by the slow rate of decay (exponents of
0.85–1.3) at low values of k. This is expected since high de-
grees attract more attention from law enforcement authorities;

TABLE VI
TOPOLOGICAL STATISTICS ON ADDING ASSOCIATIONS (FOUND IN PCSD
DATA) BETWEEN THE INDIVIDUALS IN THE TPD NARCOTICS NETWORK

therefore, having fewer associates is beneficial. However, it is
worth pointing out that the degree of a node in these narcotics
networks is also restricted by that fact that we are only consid-
ering narcotics and related crimes (to extract "pure" narcotics
networks). If other common crimes like traffic citations are
included, then the degrees are likely to be greater. Thus, the
exponent (γ) value can be affected by the methods used for
network extraction. The truncated power law distribution fits
both curves better (R2 = 93%) than the power law distrib-
ution (R2 = 85%, 87%). This implies that as the degree (k)
increases, the probability of having k links (p(k)) decreases.
This might indicate a cost or trust constraint to growth.

V. CROSS-JURISDICTIONAL CRIMINAL NETWORKS

1) Adding Only Associations: Table VI shows the topolog-
ical properties of the TPD narcotics network when it is aug-
mented with associations found in PCSD data. No additional
individuals from PCSD data were added.

In Table VI, we see that the size of the giant component in the
TPD narcotics network increases. Nodes that were previously
thought to be disconnected from the main network got con-
nected. Since we only added associations, it is clear that PCSD
contained associations between individuals in TPD that TPD
was not aware of. The increase in the number of edges shows
that previously unknown associations between existing and new
nodes were added. From a total of 28 684 new relationships
added, 6300 (which is a statistic not in Table VI) were between
existing criminals in the TPD narcotics network. These new
associations between existing people help form a stronger case
against criminals.

Potential applications: The increase in the number of nodes
and associations is a convincing example of the advantage of
sharing data between jurisdictions.

Although we expected the average shortest path length to
decrease, it increased on adding the second jurisdiction. This
can be attributed to the increase in the number of nodes. Since
the new nodes added did not have any associations with the
existing nodes, they did not add any shortcuts to the network.
However, if the giant component is not allowed to grow (no
addition of nodes) and only associations between already con-
nected nodes are added, then L decreases to 5.08. This is
expected as shortcuts between the nodes are added. The average
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Fig. 3. Log–log plot of the cumulative degree distribution (p(k)) versus the
degree (k) for a TPD narcotics network with PCSD links. The solid line is the
truncated power law curve.

degree and the highest degree increase due to the addition of
new relationships.

The number of associated border-crossing vehicles also in-
creases. Thus, the inclusion of PCSD data provided links to
more border-crossing vehicles. This will help identify more
potential target vehicles at the border. Fig. 3 plots the degree
distribution of the augmented TPD narcotics network. It can be
seen that the network maintains a scale-free degree distribution.

2) Adding Both Nodes and Associations: To examine the
results of adding both nodes and associations from the second
jurisdiction, we studied the preferential attachment phenom-
enon. Fig. 4(a) shows the preferential attachment curve when
the TPD narcotics network is augmented with both nodes and
links from PCSD data. Only nodes and links connected to the
nodes in the TPD network were added. Similarly, Fig. 4(b)
shows the preferential attachment curve when the PCSD nar-
cotics network is augmented with nodes and links from TPD
data. Both curves lie above the solid line [in Fig. 4(a) and (b)],
offering visual evidence of the presence of preferential attach-
ment. The preferential attachment curve maintains linearity for
small values of k but breaks down for higher degrees. This
can be attributed to the nature of the networks being studied.
Criminals may not prefer to be related to a large number of
individuals for the risk of drawing attention. Thus, the cost of
acquiring more links is high; this might prevent a node with a
large number of links to acquire more. In addition to the cost
effect, there may be various other reasons that may encourage
or discourage the formation of links between criminals. These
can also be used for link prediction and are explored in detail
in [29]. Additionally, external influences like law enforcement
limit the number of crimes that an individual can commit.
Third, the higher degree nodes may not attract more nodes as
they may not be committing crimes in the second jurisdiction,
or conversely, the lower degree nodes attract more nodes as they
commit more crimes in the second jurisdiction. This is possible
if one jurisdiction had incomplete information on some of the
criminals in the network, and therefore, they ended up with
lower degrees. Combining the information from the second
jurisdiction revealed more crimes and increased their degrees.

VI. MULTIPLE ENTITY CRIMINAL NETWORKS

To study multiple entity networks, we added individuals who
were linked to the existing nodes through vehicles to the TPD
narcotics network (as described in Section III-C). Table VII

Fig. 4. Curve shows preferential attachment when the narcotics network in
(a) TPD is augmented with data from PCSD and (b) PCSD is augmented with
data from TPD. The dashed line above the curve shows a linear preferential
attachment growth, and the solid line shows the state of no preferential
attachment.

TABLE VII
TOPOLOGICAL PROPERTIES OF TPD AND PCSD NARCOTICS NETWORKS

ON ADDING LINKS THROUGH VEHICLES

shows the change in topological properties of the TPD and
PCSD narcotics networks on adding transitive links through
vehicles.

Linking individuals through vehicles created links between
people who were previously not known to be associated. This
increased the size of the giant component of the networks.

Potential applications: The additional association to border-
crossing vehicles implies that the criminal history of these
vehicles can be extracted to aid in the identification of suspect
vehicles at the border (details on a method to use criminal
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histories to identify such vehicles can be found in [30]). Since
not all potentially suspect border-crossing vehicles have crimi-
nal histories recorded in local law enforcement databases, find-
ing such additional associations can be beneficial. The slight
increase in the average shortest-path length may be attributed
to the fact that the networks now contain individuals who do
not have many links to existing nodes but are associated only
through vehicles. These individuals do not add any shortcuts
to the existing networks and serve to increase the path length.
The decrease in the exponent (γ) may be due to the increase
in the number of low-degree nodes. Overall, the addition of
vehicles provides links to individuals who are not directly
associated with criminals. This aids law enforcement and also
helps identify the criminal links of a vehicle. The amount of
criminal activity of a vehicle in border-area jurisdictions can
be used to identify suspect vehicles at the border. A vehicle
with high criminal activity can be more thoroughly examined
by customs and border-protection agents.

VII. CONCLUSION AND FUTURE DIRECTIONS

CANs extracted from multiple law-enforcement- and
transportation-related data sources can be used to aid in border
protection and transportation security. This paper has focused
on the topological properties of CANs in a cross-jurisdictional
context. The role of vehicles in narcotics networks was also
studied. Narcotics networks were found to be small world in
nature with short path lengths and scale-free degree distribu-
tions. These topological properties have important implications
for law enforcement and, hence, transportation security. It
was found that a single jurisdiction may contain incomplete
information on criminals, and cross-jurisdictional data provide
an increased number of high-quality investigative leads. The
inclusion of vehicular data in CANs had clear advantages.
Vehicles provided new investigative leads that can be used to
target individuals and vehicles that might pose a threat to the
security of the border and transportation infrastructure.

In the future, the robustness and attack tolerances of criminal
networks will be studied. Robustness analysis can be used to
identify the best attack strategies to break down the networks.
The topological characteristics of other networks like car-theft
rings, gang networks, and networks with locations can be
studied to understand the difference between these criminal
networks.
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