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Abstract

Effective and efficient link analysis techniques are needed to help law enforcement and intelligence agencies fight organized

crimes such as narcotics violation, terrorism, and kidnapping. In this paper, we propose a link analysis technique that uses

shortest-path algorithms, priority-first-search (PFS) and two-tree PFS, to identify the strongest association paths between

entities in a criminal network. To evaluate effectiveness, we compared the PFS algorithms with crime investigators’ typical

association-search approach, as represented by a modified breadth-first-search (BFS). Our domain expert considered the

association paths identified by PFS algorithms to be useful about 70% of the time, whereas the modified BFS algorithm’s

precision rates were only 30% for a kidnapping network and 16.7% for a narcotics network. Efficiency of the two-tree PFS was

better for a small, dense kidnapping network, and the PFS was better for the large, sparse narcotics network.
D 2003 Published by Elsevier B.V.
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1. Introduction handling the supply, distribution, sale, and smuggling
Organized crimes such as terrorism, narcotics

violations, armed robbery, and kidnapping often

involve multiple offenders who are connected

through various relationships (e.g., kinship, friend-

ship, co-workers, or business associates) [16]. These

criminals can be treated as a network in which they

interact and play different roles in illegal activities

[22]. For instance, a narcotics network may consist

of interrelated criminals who are responsible for
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of drugs, or even money laundering. Members in a

terrorist network may have shared religious beliefs or

attended terrorist training together previously so that

they trust each other and cooperatively plan and

commit terrorist attacks [20]. In a broader sense, a

criminal network may be composed of a variety of

entities (e.g., organizations, locations, vehicles,

weapons, properties, bank accounts, etc.) in addition

to persons. Learning associations between these

entities is a critical part of uncovering criminal

activities and fighting crimes. To achieve this goal,

crime investigators often employ a method called

link analysis [8,16,24], which can help generate

investigative leads and uncover missing information

that may be buried in a criminal network. In a
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narcotics network, for example, link analysis may

reveal that a group of offenders actually belong to

the same drug supply chain. In a homicide crime,

link analysis may find ‘‘hidden’’, intermediate per-

sons connecting the victim with the suspect who

denies knowing the victim.

Link analysis usually consists of two major tasks:

extracting information about entity associations from

raw data (e.g., telephone records, surveillance logs,

and crime reports) and constructing a network repre-

sentation, and identifying associations between seem-

ingly unrelated entities in a network. Both tasks can

be very time-consuming and labor-intensive. Current

link analysis practice in law enforcement is mainly an

ad-hoc manual process. To solve a crime, investiga-

tors may spend a large amount of time performing

extensive database searches, reading crime reports,

and looking for clues of criminal associations. Al-

though some software packages have been labeled

with ‘‘link analysis tools’’, they provide only visual

representations of criminal networks and are ‘‘still not

doing the analysis’’ [24]. Because of these problems,

link analysis is used only for high-profile cases.

Effective and efficient link analysis techniques are

needed to help fight crime [22].

To address the lack-of-technique problem, we pro-

pose using two variations of the classical shortest-path

algorithms [11] for link analysis. Our evaluation

studies assess both the effectiveness and efficiency

of the proposed algorithms. The effectiveness issue

concerns whether association paths found by the

proposed algorithms are more useful for uncovering

investigative leads than those found by a modified

breadth-first-search (BFS) algorithm. The modified

BFS algorithm to a large extent simulated the man-

ual approach of association search by crime inves-

tigators and was used as a benchmark technique for

effectiveness comparison. The efficiency issue con-

cerns which shortest-path algorithm is faster in what

type of networks.

The rest of the paper is organized as follows.

Section 2 reviews the literature on link analysis and

the shortest-path algorithms. Section 3 presents the

modified BFS algorithm. The two proposed shortest-

path algorithms are introduced in Section 4. Evalua-

tion and results are presented and discussed in Section

5. In Section 6, we conclude the paper and suggest

directions for future work.
2. Literature review

In this section, we review network construction

techniques proposed in previous research and existing

link analysis tools. We then introduce the algorithms

for computing shortest paths in a graph.

2.1. Link analysis

2.1.1. Network construction

To entail link analysis, an indispensable task is to

extract information about entities and their associa-

tions from large amounts of raw data and convert the

information into a network representation. Usually,

entities are represented by nodes and associations

between them are represented by links in a network.

Different network construction methods may be

needed, depending on whether the raw data are

structured database records or unstructured textual

documents.

Several techniques have been developed for con-

structing network representations of structured data

records. For example, Goldberg and Senator [14]

suggested that consolidation and link formation oper-

ations be performed on transactional data records

during investigations of financial crimes. Consolida-

tion is a process of ‘‘disambiguating and combining

identification information into a unique key which

refers to specific individuals’’ [14]. Links or associa-

tions between consolidated individuals are formed

based on a set of heuristics such as whether the

individuals have shared addresses, shared bank

accounts, or related transactions. This technique has

been employed by the U.S. Department of the Trea-

sury to detect money laundering transactions and

activities [15]. A different network construction meth-

od used by COPLINK Detect [17] is based on the

concept space approach developed by Chen and

Lynch [6]. A concept space can be treated as a

network in which nodes represent domain-specific

concepts and links represent weighted co-occurrence

associations between concepts [17]. In COPLINK

Detect, nodes are records of entities (persons, organ-

izations, vehicles, and locations) stored in crime data-

bases. In such a network, an association exists

between a pair of entities if they appear together in

the same criminal incident. The more frequently they

occur together, the stronger the association. The
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concept space approach is primarily a statistic-based

approach and differs from the heuristic-based one in

Ref. [14].

Some other techniques can build networks based

on information extracted from unstructured data or

textual documents. Lee [21] developed a technique to

construct criminal networks from free texts. This

approach can extract entities and events from textual

crime reports by applying a large collection of

predefined patterns. Associations among extracted

entities and events are formed using relation-speci-

fying words and phrases. For example, the phrase

‘‘member of’’ indicates an entity-to-entity association

between an individual and an organization; the word

‘‘arrest’’ may suggest an entity-to-event association

between an individual and an arrest event. This

approach relies heavily on a fixed set of predefined

patterns and rules and thus has a limited scope of

application. The concept space approach [6,17], as

mentioned earlier, can also be used to construct

networks from textual documents. Instead of using

structured data from databases, it uses noun phrases

extracted from crime reports as entities to build a

criminal network. An association or co-occurrence

relationship exists between a pair of entities as long

as they appear together in the same report. However,

the noun phrases extracted may not necessarily be

the entities that interest the crime investigators.

Success of this type of network construction

approaches, to a large extent, depends on the devel-

opment of named-entity extraction technique [7],

which is the automatic identification from text docu-

ments of the names of entities of interest, such as

date, time, number expression, person, location, and

organization [5,7].

2.1.2. Link analysis tools

In addition to network construction, another im-

portant link analysis task is searching for possible

associations between entities. However, most existing

link analysis tools can only visualize criminal net-

works and do not offer much help with association

search. This section will provide a review of existing

link analysis tools.

The earliest link analysis tool is the Anacapa

charting system [16], which has been used exten-

sively in law enforcement since its introduction.

Based on human-extracted association information,
the system can generate a two-dimensional visual

representation of a network with different symbols

representing different types of entities. However, this

tool does not facilitate association search and an

investigator must manually examine the network

display to find association paths between entities or

confirm initial suspicions about specific suspects

[24]. Other link analysis tools such as Netmap [15]

and Analyst’s Notebook [19] are also designed for

network visualization rather than for association

search.

A link analysis tool called Watson [2] can search

and identify direct associations between entities by

querying databases. Given a specific entity such as a

person’s name, Watson automatically forms a query to

search for other records that are related to the person.

For example, an analyst may want to find out who is

related to a kidnapped child. The related records

found by Watson, which may include the child’s

relatives, friends, or other acquaintances, will be

linked to this child and presented in a link chart.

COPLINK Detect [17] can also be treated as a link

analysis tool which provides direct association search

functionality.

In Section 2.2, we review shortest-path algo-

rithms, which we propose to address the problem

of identifying the strongest associations between

entities that are not directly related. Although these

algorithms have been studied and employed widely

in other domains, their importance and relevance to

link analysis have not yet been recognized in law

enforcement.

2.2. Shortest-path algorithms

Shortest-path algorithms are a type of graph

search algorithms. They can identify the optimal

paths between nodes in a graph (i.e., a network)

by examining link weights. Conventional shortest-

path algorithms have been used in many applications

such as robot motion planning [4], computer net-

work routing [23], transportation and traffic control

[26], critical path computation in PERT charts, etc.

Recently, a neural network approach in artificial

intelligence has been proposed for shortest-path

computation [1,3]. In this section, we review the

conventional approaches and briefly introduce the

neural network approach.
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The Dijkstra algorithm [11] is the classical method

for computing the shortest paths from a single source

node to every other node in a weighted graph. Most

other algorithms for solving this problem are based

on this algorithm but have improved data structures

for implementation [12]. For example, the priority-

first-search (PFS) algorithm [9] is faster than the

Dijkstra algorithm because of the use of a priority

queue.

Unlike the classical Dijkstra algorithm, the two-

tree Dijkstra algorithm computes the shortest path

from a single source node to a single destination

node, rather than to every other node in a graph.

Previous studies have demonstrated that the two-tree

Dijkstra algorithm can be much faster than the Dijk-

stra algorithm. According to Helgason et al. [18], in

most cases, the Dijkstra algorithm generated a short-

est-path tree containing approximately 50% of the

nodes in a graph before the shortest path between a

source node and a destination node was found. Short-

est-path trees generated by the two-tree Dijkstra

algorithm, in contrast, contained only 6% of the nodes

in the graph. This might save a substantial amount of

computational time.

Some researchers have proposed neural network

approaches to solving the shortest-path problem.

Araujo et al. [3] extended Ali and Kamoun’s study

[1] and applied a two-layer Hopfield net to the short-

est-path problem. In their Hopfield net, each neuron

corresponds with a link in a graph. The value of a

neuron is 1 if the link it represents participates in the

shortest path and 0 otherwise. It has been found that

the two-layer Hopfield net could be faster than con-

ventional shortest-path algorithms because of its par-

allel architecture. However, these proposed Hopfield

net approaches work only for networks of small size

(e.g., 40 in Ref. [3]).

In summary, previous studies have proposed some

techniques for network construction in link analysis.

However, little research has been done to address the

association search problem. Specifically, an effective

and efficient link analysis technique is needed to find

association paths between two or more source entities

not directly related. Moreover, the paths found should

reveal strong associations between entities so that

important investigative leads can be uncovered. We

propose to use the shortest-path algorithms to achieve

this goal. To compare the proposed algorithms with
current link analysis practices, in our pilot study, we

recorded and analyzed the association search process-

es of crime investigators experienced in link analysis.

We found that the typical association search approach

can be described as a breadth-first search [9]. How-

ever, such an approach cannot guarantee finding the

strongest associations between entities and thus may

not successfully generate investigative leads. In the

next section we present the modified BFS algorithm,

which simulates the typical association search.
3. The modified BFS algorithm

Since existing link analysis tools are limited to

direct association search, crime investigators must

explore links manually when they have entities that

are not directly related. We found that a typical

search starts with a single source entity and incre-

mentally builds up an association path during link

exploration. For example, a crime investigator may

need to find associations between two seemingly

unrelated drug offenders. In this case, the crime

investigator may start with one offender’s name and

use a link analysis tool to find all entities that are

associated with the offender in previous crimes. By

reading each crime report, the investigator can

determine whether a link is useful for generating

a new lead to connect the two offenders. He then

selects those useful links and does further searches,

in which entities associated with the newly selected

entities from the previous round are examined. He

keeps exploring new entities until an association

path that connects the two offenders is found.

Such a search process is very similar to a graph

traversal algorithm called BFS [9], except that an

investigator may consider link usefulness during ex-

ploration. To describe this algorithm, we use the

notation found in Ref. [18]. The input of this algo-

rithm is a weighted directed graph G = (N, A) with a

node set N and a link set A, jNj= n, jAj=m. A

nonnegative number, lij, is used to represent the

weight of the link (i, j)aA. Each node uaN has an

incoming link set, In(u), and an outgoing link set,

Out(u). Since our criminal networks are undirected

graphs, In(u) =Out(u).

Starting at a source node s, BFS can find paths

leading to a target node t. It works by maintaining a
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traversal tree T rooted at the node s. In this tree, the

child nodes of a specific node u are u’s outgoing

neighbors in the graph G. Initially, T contains only

s. The algorithm then collects all the outgoing

neighbors of s in G and sets them as the child

nodes of s. For each child node of s, the algorithm

further finds its children and adds them to the tree.

This procedure is repeated until the target node t is

reached. The time complexity of a BFS algorithm is

O(n +m) [9].

As indicated earlier, a crime investigator may not

explore all entities associated with a specific entity but

selects only those having strong associations. We

therefore modified the BFS algorithm so that when

it finds the children of a node, it selects only those

neighbors that have a link weight greater than a

predefined threshold value. The modified BFS algo-

rithm is presented in Fig. 1.

Notice that multiple paths may exist between the

source entities s and t. BFS simply finds one such path

and does not guarantee to identify the strongest asso-

ciations between source entities. This suggests that the

shortest-path algorithms may be a better option.
Fig. 1. The modified
4. Shortest-path algorithms

To find the strongest associations between two or

more source entities, we propose to employ conven-

tional shortest-path algorithms. However, to apply the

algorithms, a network representation transformation

must be made.

4.1. Network representation transformation

In our criminal networks, the strength of an asso-

ciation between two directly connected nodes is

represented by their link weight, which is a number

between zero and one. A link weight can be treated as

a probability measure indicating how likely it is that

two nodes are related. In general, the probability of a

set of mutually independent events occurring together

is the product of the probabilities of the individual

events. Therefore, if two nodes are not connected

directly but by a path consisting of a sequence of

intermediate links, the strength of the association

between these two nodes should be the product of

the weights of these intermediate links. For example,
BFS algorithm.
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if node A and node C are connected through node B,

and the weights of the intermediate links (A–B) and

(B–C) are 0.5 and 0.8, respectively, then the weight of

the path (A–B–C) would be 0.4. To find the strongest

association between a pair of nodes, therefore, is to

find the path with the largest weight product. Fig. 2

presents an illustrative example.

In this figure, the number beside each link is that

link’s weight or association strength. Two paths, (A–

B–C–D) and (A–E–D), exist between the source

node A and the destination node D. The association

strength of path (A –B–C–D) is 0.28 (0.5�
0.8� 0.7), and the association strength of path (A–

E–D) is 0.24 (0.8� 0.3). Therefore, path (A–B–C–

D) has a stronger association between node A and

node D than path (A–E–D).

Although the shortest-path algorithms can identify

the optimal path between a pair of nodes, they cannot

be used directly to identify the strongest association

between the two nodes. This is because of the fol-

lowing two representation problems:

(a) In a general weighted graph, the weight of a link

represents the distance or cost of traveling from

one end of the link to the other. Therefore, a low

weight is preferred to a high weight. However, a

link weight in a criminal network is an indicator

of how strongly the two nodes are related to each

other. Thus, a high weight is preferred to a low

weight.

(b) The shortest path is often computed based on the

minimum total weight, which is the sum of the

weights of the links along this path. However, our

objective is to find a path with the maximum

weight product.

In order to address the two representation prob-

lems, we transformed the link weight in a criminal

network to a distance measure in a new graph repre-
Fig. 2. Two indirectly connected nodes (A and D).
sentation. In this new graph, the nodes are the same as

those in the original network, but the new link weights

are computed based on the original weights using a

simple logarithmic transformation:

l ¼ �lnw 0<wV1

where l is the link weight in the new graph and w is

the corresponding link weight in the original network.

Given this transformation, we postulate the following

axioms:

(1) All link weights in the new graph are nonnegative

numbers.

(2) A lower link weight in the new graph corresponds

with a higher link weight in the original network.

(3) The shortest path (using summation of link

weights) between a pair of nodes in the new

graph generates a path with the maximum link

weight product among all the alternative paths

between these two nodes in the original network.

Proof. Proofs of these three axioms are fairly

straightforward, following the transformation equation

directly:

Axiom 1. Since 0 <wV 1, thus ln wV 0, which

suggests that � ln wz 0.

Axiom 2. Let l1 < l2, then � ln w1 <� ln w2 or ln

w1>ln w2. Since ln w is a monotonic increasing

function, it follows that w1>w2.

Axiom 3. Consider the shortest path, say P, between a

pair of nodes A and B. P consists of a set of links with

weight (l1,l2,. . .,lp), 1V pV n, where n is the total

number of nodes in this graph. The total length of this

path is
Pp

i¼1 li. Consider another path between node A

and node B, say Q, consisting of another set of links

with weight (l1V,l2V,. . .,lqV), 1V qV n. The total length isPq
i¼1 liV.

Because P is the shortest path between node A and

node B, we know that

Xp

i¼1

li <
Xq

i¼1

liV:

Since li =� ln wi and liV =� ln wiV by definition,

we have
Pp

lnwi >
Pq

lnwiV.
i¼1 i¼1
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It follows that expð
Pp

i¼1 lnwiÞ > expð
Pq

i¼1 lnwiVÞ,
which suggests that

Qp
i¼1wi >

Qq
i¼1wiV. 5

Axiom 1 ensures that the new graph does not

contain negative-weight links, which is a necessary

condition for the shortest-path algorithms [12]. Axi-

oms 2 and 3, respectively, address the two represen-

tation problems. Therefore, with such a transfor-

mation, we are able to use conventional shortest-path

algorithms to identify the strongest associations be-

tween a pair of nodes or entities in a criminal network.

4.2. Shortest-path algorithms

We propose using the PFS [9] and the two-tree

Dijkstra algorithm [18]. Both algorithms can compute

the shortest path between two source nodes. Consid-

ering the situation where an investigator needs to find

associations between more than two entities, we

repeatedly use the algorithms to identify the strongest

associations among multiple source nodes.

We assume that a group of nodes is strongly

associated if each pair of nodes in the group is

strongly associated. That is, given k source nodes

(u1,u2,. . .,uk), we first find the shortest paths between

u1 and every other source node (u2 through uk). Then,

we find the shortest paths between u2 and the remain-

ing source nodes (u3 through uk). Such a process is
Fig. 3. The modified
repeated until the shortest paths between all possible

pairs of the k source nodes are found. The total

number of these shortest paths is k(k� 1)/2. It is

possible that some of these paths share common links.

If this happens, we combine the common links to

avoid redundancy.

4.2.1. The modified PFS algorithm

The PFS algorithm [9] is a variation of the

classical Dijkstra algorithm [11]. The algorithm

works by maintaining a shortest-path tree T rooted

at a source node s. T contains nodes whose shortest

distances from s are already known. Each node u in T

has a parent, which is represented by pu. A set of

labels, du, is used to record the distances from the

node u to s. Initially, T contains only s. At each step,

we select from the candidate set Q a node with the

minimum distance to s and add this node to T. Once

T includes all nodes in the graph, the shortest paths

from the source node s to all the other nodes have

been found. PFS differs from the Dijkstra algorithm

because it uses an efficient priority queue for the

candidate set Q.

With modifications, PFS can be used to compute

the shortest paths from a single source node to a set

of specified nodes in the graph. That is, given a set

of nodes KpN, jKj= kz 2 and a source node saK,
PFS algorithm.
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the modified PFS algorithm can compute the short-

est paths from s to all uaK and u p s. We therefore

modify the algorithm so that it stops as soon as all

uaK are included in the shortest-path tree T. Note

that when K contains only two nodes, the problem

is reduced to a one-to-one shortest-path problem

[18]. The modified PFS algorithm is presented in

Fig. 3.

When computing the shortest paths from K’s

second node to every other node in K, we repeat this

procedure. Note that we do not need to compute the

shortest path from the second node to the first node

again, since it has already been computed. This

procedure is repeated k� 1 times until the shortest
Fig. 4. The two-tree
paths between all possible pairs of the nodes in K have

been found.

We implement the priority queue using a heap tree

for the candidate set Q. At each iteration of the while

loop, it takes O(log n) time to search for the minimum

element u from Q, and O(jOut(u)jlog n) time to

examine and update the distances of incident links

of u. Thus, the execution time for the while loop is

SuaN (1 + jOut(u)j = log n or O((n+m)log n), because

SuaNjOut(u)j=m. As a result, the overall time com-

plexity for computing all shortest paths for k nodes is

O(k (n +m)log n). PFS is faster than the Dijkstra

algorithm, whose time complexity is O(k(n2+m))

[12].
PFS algorithm.
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4.2.2. The two-tree Dijkstra/PFS algorithm

No modification is made to the two-tree Dijkstra

algorithm because it can find the shortest path only

between two nodes. The two-tree Dijkstra algorithm

works by searching from both ends of the shortest path

simultaneously [18]. A shortest-path tree rooted at the

source node s and a shortest-path tree rooted at another

source node t grow in alternate steps. The two trees are

analogous except that the tree rooted at s expands a

node by examining its outgoing links, and the tree

rooted at t expands a node by examining its incoming

links. A shortest path is found when both trees have a

common node, say r, such that dr
s+ dr

t is a minimum,

where dr
s is the distance between r and s, and dr

t is the

distance between r and t, respectively. We define b as

the minimum distance and J as the set of nodes that

can be used to identify the shortest path. The following

two-tree Dijkstra algorithm is provided in Ref. [18].

Assuming a priority queue is used for the candidate set

Q, we call this algorithm two-tree PFS (Fig. 4).

Because the two-tree PFS algorithm computes the

shortest path only between two nodes, it must be used

k (k� 1)/2 times to identify the shortest paths for all

possible node pairs in K. As a result, the overall time

complexity is O(k2(n+m)log n).

We did not use Floyd’s [13] or Dantzig’s [10] all-

pair shortest-path algorithms, which compute the

shortest path for every pair of nodes in a graph. These

algorithms require a substantial execution time of

O(n3) [12]. However, the execution time of the two

proposed algorithms will not exceed O(k2n2), which is

less than O(n3) as long as k2 < n. In most situations

where k is rather small compared with n, these two

proposed algorithms will work faster than all-pair

shortest-path algorithms.
5. System evaluation

We conducted a user evaluation and a simulation

experiment in order to assess the performance of the

proposed shortest-path algorithms. The user evalua-

tion was aimed at addressing the effectiveness issue,

namely, whether association paths identified by the

shortest-path algorithms are more likely to generate

investigative leads than those identified by the mod-

ified BFS algorithm, which is representative of the

typical association search approach. The purpose of
the simulation experiment, on the other hand, was to

determine which shortest-path algorithm was more

efficient for what type of networks. Crime investiga-

tors often encounter the efficiency issue when they

work on a large network [15]. In this section, we first

briefly describe our network construction process and

then present the evaluation results.

5.1. Network construction

5.1.1. COPLINK concept space and AZNP

The criminal networks used in our experiment

were constructed based on the same concept space

approach [6] used in COPLINK Detect [17]. In such

networks, the strength of an association is indicated

by a co-occurrence weight. As reviewed previously,

the nodes in COPLINK Detect are structured database

records of entities. COPLINK Detect allows for link

analysis with depth 1, that is, only nodes directly

associated with source nodes can be found.

Rather than using structured database records, our

criminal networks were constructed from unstructured

textual documents. This is because law enforcement

agencies often rely on crime report narratives to

obtain detailed criminal association information that

may not otherwise be available in structured data. We

used our automated noun-phrasing tool called AZNP

to extract noun phrases from texts based on part-of-

speech tagging and noun phrasing rules [25]. The

extracted noun phrases included various entity types

such as persons, locations, vehicles, and properties.

Co-occurrence weights between these entities were

calculated to generate association strength measures.

5.1.2. Data set

The Phoenix Police Department provided us with

one-year’s worth of crime reports. The size of the

dataset is 1 GB. These reports described various types

of crimes ranging from shop-lifting to auto theft, from

credit card fraud to narcotics possession and sales. We

selected two samples as our test bed, namely, kidnap-

ping and narcotics, both of which are organized

crimes. The size of the kidnapping report collection

is 4.5 MB, and the size of the narcotics report

collection is 38 MB.

The crime reports varied substantially in length. For

example, in the kidnapping sample, some documents

simply contained a few lines about a phoned-in kid-



Table 1

Sample statistics of two networks

Number

of reports

Number

of noun

phrases

extracted

Network

size (n)

Number

of links

(m)

Average

number of

links a

node has

Kidnapping 271 95,328 280 25,862 92.4

Narcotics 3572 861,516 4257 733,572 172.3
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napping report, while others had hundreds of lines

detailing a kidnapping investigation. Since the length

of a document can affect the co-occurrence weights of

the concepts it contains [6], we removed from our data

sets those reports containing fewer than five lines of

text. The noun phrases were extracted from the result-

ing document collections and irrelevant terms were

filtered out based on a 3400-item stop word list. The

noun phrases left after filtering were used as network

nodes and their co-occurrence weights were calculated.

Two networks were constructed: one for the kidnap-

ping sample and the other for the narcotics sample.

Table 1 presents the statistics for the two samples.

5.2. Results and discussions

5.2.1. User evaluation: effectiveness issue

In the user evaluation, we compared the effective-

ness of the association paths identified by the shortest-

path algorithms and those identified by the modified

BFS algorithm. The purpose of the evaluation was to

ascertain whether the shortest-path algorithms would

be more useful for uncovering crime investigative

leads.

The paths identified by an algorithm may consist of

links that are not useful for crime investigations. With

the concept space approach, a link between two

entities is created if they co-occur in crime reports.

However, a co-occurring association may not neces-

sarily mean an important relationship between enti-

ties. For example, the shortest path algorithms

identified three association paths for a kidnapping

case with three source nodes: Juan (person), Jose

(person), and West Van Buren (location):1

(1) Juan–Jose

(2) Juan–Maria–West Van Buren

(3) Jose–Maria–West Van Buren

Path (1) is useful because both Juan and Jose are

listed in a report as victims in a kidnapping crime.

Path (2) is considered to be non-useful. Two reports

describe the association between Juan and Maria: one

records that Juan Balderaz’s ex-wife was Maria
1 All entity names are scrubbed to ensure data confidentiality.
Palma; the other indicates that Juan Rodriguez kid-

napped Maria Molina’s daughter. The association

between Maria and West Van Buren is recorded in

another report, which indicates that Maria Dillon lived

at 3100 West Van Buren. Notice that the three Maria’s

are different persons. Thus, the association path with

Maria as the intermediate node cannot provide infor-

mation about how Juan and West Van Buren are

related. Path (3) is a useful path because one report

indicates that Jose Carrasco’s friend was Maria Dillon,

who lived at 3100 West Van Buren.

To measure the effectiveness of our algorithms, we

used a precision rate defined as follows:

precision

¼ number of useful paths selected by experts

total number of paths identified by the algorithm

� 100%

Because the modified BFS algorithm did not

guarantee to identify the strongest association paths

between entities, we predicted that the shortest-path

algorithms could achieve a higher precision than the

modified BFS algorithm.

We randomly selected 30 pairs of source nodes

from each of the kidnapping network and the nar-

cotics network. Association paths were computed

using both a shortest-path algorithm and the modified

BFS algorithm. As shown in Table 2, the paths found

by the modified BFS algorithm generally contain

more intermediate links than a shortest-path algo-

rithm. Which shortest-path algorithm was used is

not important here because they always generate the

same paths.

A domain expert from the Tucson Police Depart-

ment evaluated the resulting association paths. The

expert had been serving in law enforcement for more

than 30 years and had a substantial amount of expe-



Table 2

Effectiveness evaluation results

Algorithm Average number

of links in

association paths

Precision

Kidnapping Narcotics Kidnapping Narcotics

Shortest-path

algorithms

1.40 2.06 66.7% 71.4%

Modified BFS 1.73 12.50 30.0% 16.7%
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rience in link analysis. For the results produced by an

algorithm, he examined the 30 paths from each

network by reading the original crime reports. He

determined whether an association path was useful for

generating investigative leads based on his past expe-

rience investigating similar crimes. It took 2.5–3 h to

complete the evaluation task for each network. The

results show that on average the shortest-path algo-

rithms identified more useful association paths than

the modified BFS algorithm. Around 70% of the paths

found by the shortest-path algorithms were considered

useful for both networks. For modified BFS, in

contrast, only 30% of the paths from the kidnapping

network and 16.7% of the paths from the narcotics

network were considered to be useful. Table 2 shows

the precision rate of each algorithm.

The shortest-path algorithms can achieve a higher

precision because they always select associations with

high co-occurrence weights during link exploration.

As discussed previously, a co-occurrence weight is a

measure of how frequently two entities are related.

Therefore, the more frequently two entities are asso-

ciated, the less likely they are to be related by chance,

and the more likely such an association will be useful

for investigations. In contrast, the modified BFS

algorithm produces arbitrary paths between entities.

It is very likely that these paths contain unimportant

associations, resulting in a low precision rate.

Although promising, the shortest-path algorithms

still failed to identify useful paths about 30% of the

time. Based on our analysis of the non-useful paths

found by the shortest path algorithms, we categorized

the reasons for the failures as follows (using the

kidnapping network as an example):

� Some nodes in the networks do not represent

unique entities. This situation often occurs for the

person type. Usually, after a person’s full name is
provided at the beginning of a crime report

narrative, he/she is referred to only by the first

name in later parts of the report. During network

construction, the same first names extracted by the

noun phraser from different reports are indiscrim-

inately treated as one single node. As a result, a

node (e.g., Maria) may not refer to a unique person

but to different people with the same first name

(e.g., Maria Palma, Maria Molina, Maria Dillon,

etc.). This problem also exists for other types of

entities such as vehicles, locations, and properties.

For example, ‘‘white car’’ may refer to different

white cars owned by different persons; ‘‘North 7th

Street’’ includes a number of addresses on that

particular street. A non-useful association path may

result if it contains such intermediate nodes. In our

test bed, 54.2% of the non-useful association paths

fell into this category.
� Whether an entity is relevant or not depends on

specific contexts. This problem seldom affects

entities such as persons and addresses, because

their presence in a crime report usually implies that

they are relevant to that particular crime. Indeed,

any person mentioned in a report has a role

descriptor. For example, ‘‘sp’’ means suspect, ‘‘v’’

means victim, and ‘‘w’’ means witness. However,

property entities may include any physical object

that a person possesses. It is much more difficult to

determine whether or not a property is relevant to a

particular crime without considering the specific

context of a crime. When a property is the target of

a crime, it usually is considered to be relevant.

However, if a physical object is mentioned simply

to describe the environment or a situation, it is

often treated as irrelevant. For example, a ‘‘cell

phone’’ is a relevant property if it is stolen in a

crime; it is irrelevant if a witness used his or her

cell phone to report a crime to the police. Unlike a

human, who can determine an entity’s relevance

based on contextual clues, the noun phraser cannot

examine texts semantically to distinguish between

relevant and irrelevant entities. As a result, an

association path will be non-useful if it happens to

include an irrelevant entity. Over 37% of the non-

useful paths had this problem.
� Two entities may have a fake relationship even

though they are listed in the same report. A link is

established when two entities appear together in the
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same document. However, this link may be a trivial

association between the two entities. Usually,

associations between a person and other entities

(e.g., another person, vehicles, addresses, etc.) are

less frequently subject to this problem. However,

associations between entities other than persons are

often less informative. For example, a link exists

between ‘‘white Toyota’’ and ‘‘North 7th Street’’

because they are listed in the same report narrative.

In this report, we found that a male driving a white

Toyota car kidnapped the daughter of a person,

who lived on North 7th Street. Such a link does not

imply a useful relationship between these two

entities but a ‘‘fake’’ one. Around 5% of the non-

useful paths fell into this category.

Result of this analysis suggests that the effective-

ness of our algorithms may be improved if more

appropriate entities and associations are extracted

and used.

5.2.2. Simulation experiment: efficiency issue

Our simulation experiment focused on the efficien-

cy of the two shortest-path algorithms (modified PFS

and two-tree PFS). We define the efficiency of an

algorithm as its average execution time. The experi-

ment was intended to ascertain which algorithm is

more efficient for what type of networks in terms of

network size and other structural characteristics.

To compare the efficiency of these two algo-

rithms in the case of multiple source nodes, we

varied the number of source nodes, k, from 2 to 5 in

the simulations. We chose these numbers based on

the observation from our pilot studies in which

investigators usually used less than five source

entities during an association search. Given a spe-

cific k, we randomly generated 100 cases using both
Table 3

Mean execution time (in seconds) for the two shortest-path algorithms (N

(a) Results for the kidnapping network

Algorithm k= 2 k = 3

Modified PFS 1.00 (0.54) 2.89 (0.97)

Two-tree PFS 0.35 (0.19) 0.95 (0.28)

(b) Results for the narcotics network

Modified PFS 66.75 (27.06) 194.05 (53.97

Two-tree PFS 239.00 (132.00) 709.50 (263.7
algorithms for each network. The execution time for

the algorithms was recorded and is presented in

Table 3.

For all four values of k, the pairwise t-tests for the

mean execution time suggest that two-tree PFS is

significantly faster than PFS ( p < 0.001) in the kid-

napping network. However, PFS is significantly faster

than the two-tree PFS algorithm ( p < 0.01) in the

narcotics network. Fig. 5 presents the execution time

plot with k = 5 for the kidnapping and narcotics net-

works, respectively.

The result from the kidnapping network is consis-

tent with the findings in Ref. [18]. According to

Helgason et al. [18], a two-tree algorithm usually is

faster than one-tree algorithms. In their study, a short-

est-path tree in a one-tree algorithm contains about

50% of the nodes in a network before the shortest path

is found; whereas a two-tree algorithm can find the

shortest path when its trees contain only 6% of the

nodes. We found similar results in terms of the

number of nodes contained in the shortest-path trees.

For the kidnapping network, the one-tree PFS algo-

rithm generated a tree containing 52% of the nodes,

and the two-tree PFS algorithm generated two trees

containing 14.7% of the nodes in total. For the

narcotics network, the tree in the one-tree PFS algo-

rithm contained 49.6% of the nodes, and the trees in

the two-tree PFS algorithm only contained 3.9% of

the nodes.

However, the one-tree algorithm outperformed its

two-tree counterpart in the narcotics network. Based

on our analysis of the structural characteristics of both

networks, we found that two factors might have

caused this discrepancy.

� Network size. As the size of a network increases,

the size of the candidate set Q, which contains
umbers in parentheses are standard deviations)

k= 4 k = 5

6.00 (1.26) 10.67 (2.09)

1.94 (0.37) 3.45 (0.65)

) 419.47 (61.91) 661.10 (132.22)

5) 1350.56 (348.70) 2,322.28 (546.25)



Fig. 5. Execution time scatter plot (k= 5). (a) Results for the

kidnapping network. (b) Results for the narcotics network.
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temporarily labeled nodes, also increases. It takes

time to search and update the labels in Q when

incident links of a node are explored. Therefore,

when a network is large and the computational

cost of processing the candidate sets becomes

high, the two-tree algorithm will be inefficient.

For the narcotics network (n = 4257), the two

candidate sets in the two-tree PFS algorithm

together contained 120% of the total nodes,

whereas the candidate set in the one-tree PFS

algorithm contained only 47.9% of the total

nodes. Thus, the time for processing the

candidate sets in the two-tree PFS algorithm

was much longer than the time spent in the one-

tree PFS algorithm, causing the two-tree PFS

algorithm to be slower.
� Network density. The density of a network is

defined as the ratio of the total number of links to

the possible number of links [27]. Thus, the

density of an undirected network consisting of n

nodes and m links is 2m/n(n� 1). Network density

may have an impact on the efficiency of a two-tree

algorithm, which can find a shortest path only if
the two trees have overlapping nodes. The lower

the density of a network, the less likely two trees

will overlap. In our experiment, the density of the

narcotics network is 0.08. This means that the two

trees have overlapping nodes only 8% of the time

and that the algorithm must spend more time

growing the trees. The kidnapping network, in

contrast, has a much higher density (0.66), causing

the two-tree algorithm to be faster than the one-

tree algorithm.

Based on the analysis, we suggest that the two-tree

PFS algorithm be used for small and dense networks.

For large and sparse networks, the one-tree PFS

algorithm is faster.
6. Conclusions

Effective and efficient link analysis techniques can

assist investigation of organized crimes. With the

help of such techniques, crime investigators may

acquire better understanding of the interrelationships

between offenders, thereby discovering new leads for

investigation.

In this paper, we proposed a link analysis tech-

nique that employs shortest-path algorithms (PFS

and two-tree PFS) to identify the strongest associa-

tions between two or more entities in a criminal

network. Modifications were made to the algorithms

to solve the shortest-path computation problem for

multiple source nodes. After a logarithmic transfor-

mation of the link weights, these shortest paths could

identify the strongest associations between given

entities.

Our evaluation study focused on the approach’s

effectiveness and efficiency, both of which are desir-

able features of a sophisticated decision-support sys-

tem. The results show that the shortest-path algorithms

outperformed the typical association search approach

(as represented by the modified BFS algorithm) of

crime investigators in terms of effectiveness. The

association paths identified using the shortest-path

algorithms were considered as useful about 70% of

the time, as opposed to precision rates of 30% (for the

kidnapping network) and 16.7% (for the narcotics

network) with the modified BFS algorithm. The two

shortest-path algorithms always produced identical
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results but the two-tree PFS algorithm was faster for

the small and dense kidnapping network and the PFS

algorithm was faster for the large and sparse narcotics

network.

Analysis of the evaluation results suggests that the

effectiveness might be improved by extracting more

appropriate entities from texts and using them as

network nodes. In our future research, we will apply

effective named-entity extraction techniques to re-

place our current noun phraser. We will also incorpo-

rate some domain-specific heuristics to help the

system select only entities and associations that are

considered useful by crime investigators.
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