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ABSTRACT

SCALABLE DATA DELIVERY FOR NETWORKED SERVERS
AND WIRELESS SENSOR NETWORKS

FEBRUARY 2006

DAVID J. YATES

B.Sc., TUFTS UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James F. Kurose

As Internet technology continues to evolve, network-based services will expand in

number and in functionality. For example, web content is increasingly being augmented

with more bandwidth-intensive audio and video. Similarly, distributed sensing applications

are becoming more data-intensive. For example, the current generation of real-time weather

data feeds (e.g., from NCAR) will improve by an order of magnitude in sampling frequency

and resolution over the next few years. In combination, these factors will dramatically

increase the performance requirements for network-based content and data servers.

Maintaining high performance while supporting a large number of connections is im-

portant to any information server. A natural way to accomplish this is by exploiting the

inherent parallelism among connections.Connection-level parallelismassociates the pro-

tocol processing required by connections with individual processes or threads. In the first

part of this thesis, we investigate the performance of connection-level parallelism, and
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evaluate its potential as a paradigm for communication on shared-memory multiprocessor

servers. We focus on three issues in this evaluation:

• Scalability in processors and connections.The first part of this dissertation shows

that throughput of connection-level parallel protocol stacks scales well with the num-

ber of processors. Furthermore, the maximum achievable throughput delivered is, for

the most part, sustained as the number of connections increases. We also show that

for moderate to large numbers of connections, the number of threads in the system

and the number of connections assigned to each thread are the key factors in deter-

mining performance on a multiprocessor.

• Fairness behavior.The first part of this dissertation also investigates how aggregate

throughput is distributed across connections. We find that in many cases throughput

is not distributed fairly among connections, or threads. Our results show that the

differences in the per-connection (as well as per-thread) throughput can be explained

by the combined effects of scheduling and memory reference behavior.

• Suitability for continuous media applications.We then assess the suitability of connection-

level parallelism (CLP) for supporting continuous media applications. We present

results for a new technique, calledthroughput-based scheduling, that implements a

mechanism in which threads monitor and report per-connection throughput to the

scheduler. Using a network subsystem suitable for sending continuous media, we

show that throughput-based scheduling is suitable for supporting continuous media

applications.

We explore these issues in the context of the network subsystem, i.e., the protocol stack,

examining throughput, latency, and scalability.

In wireless sensor networks, challenging issues of scale arise from the need to satisfy

a variable and potentially large number of queries for sensor data. In the second part of

this thesis, we explore the benefits and costs of caching sensor data in a server that is
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also the gateway to a sensor network. In such systems, one or more driving applications

retrieve sensor data that is disseminated from sensor fields. As data is consumed by these

applications, it has an associatedquality that is a function of two parameters: (1) the delay

experienced in receiving the data, and; (2) the deviation between the value of each data

item and the corresponding data in the sensor field. Acquiring sensor data usually also

has acostthat reflects the system resources consumed in querying and delivering the data

to the applications. This work examines how well several proposed caching approaches

perform in terms of both cost and quality. These approaches are designed to be general

since they make no assumptions about whether the overall sensor network architecture

uses a structured or unstructured data model.

We assess the impact of several factors on cost and quality performance in wireless

sensor networks:

• Our caching and lookup policies; the

• Relative importance of data accuracy and system delay; and the

• Rate and magnitude of change in sensed data values in the environment.

Our research demonstrates that different caching approaches should be used depend-

ing on the application requirements and the characteristics of the environment and sensor

network. We show that caching approaches that prevent cache misses by computing and

returning approximate values for sensor data can provide improved quality and reduced

cost at the same time. This win-win is possible because when system delay is sufficiently

important, the benefit to both cost and quality achieved by using approximate values out-

weighs the negative impact on quality due to the approximation. When there is a trade-off

between cost and quality, this trade-off is linear. For applications that require bounded

resource consumption, we identify a class of caching and lookup policies for which the

sensor field query rate is bounded when servicing an arbitrary workload of user queries for

sensor data. This upper bound is achieved by having multiple user queries share the cost
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of a sensor field query. We also introduce an analytic model for changing the sensor field

data values that captures temporal correlation, spatial correlation, and allows different rates

at which the values can change. We compare our results that use this correlated model for

sensor data values with results that use real-world trace data taken at the Intel Berkeley

Research Lab.

Finally, we demonstrate that our results are robust with respect to the manner in which

the environment being monitored changes. For our sensor network model with correlated

changes to the environment, we present results that vary the rate at which the environment

changes by two orders of magnitude. We present results using the real-world trace data

varying the rate at which the sensor field is queried, also by two orders of magnitude.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

1.1.1 Motivation for Scalable Networked Servers

As Internet technology continues to evolve, network-based services will expand in num-

ber and in functionality. For example, web content is increasingly being augmented with

more bandwidth-intensive audio and video. Examples include servers for public infor-

mation (e.g., digital libraries or government information sources) and entertainment (e.g.,

video-on-demand). Similarly, distributed sensing applications are becoming more data-

intensive. For example, the current generation of real-time weather data feeds (e.g., from

NCAR) are improving by an order of magnitude in sampling frequency and resolution.

Such improvements mean that meteorologists can better predict severe weather, and there-

fore help save lives and reduce property damage [142]. In combination, these factors will

dramatically increase the performance requirements for network-based content and data

servers. These servers must therefore send (or receive) information at high throughput,

which must be sustained (or allowed to degrade gracefully) in the presence of large num-

bers of clients.

Maintaining high performance while supporting a large number of connections is im-

portant to any information server. A natural way to accomplish this is by exploiting the

inherent parallelism among connections.Connection-level parallelism(CLP) associates

the protocol processing required by connections with individual processes or threads. On a

shared-memory multiprocessor (e.g., [1, 24, 48]), performance gains can be realized over

multiple connections by executing these threads concurrently on different processors.
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In the first part of this thesis, we investigate the performance of connection-level par-

allelism, and evaluate its potential as a paradigm for communication on shared-memory

multiprocessor servers. We focus on three issues in this evaluation:

• Scalability in processors and connections.Connection-level parallelism is an ap-

proach advocated for communication on shared-memory multiprocessors [49, 116,

118]. We will provide an implementation of CLP, and experimentally demonstrate

how throughput scales with the number of processors, and how throughput changes

as the number of connections increases.

• Fairness behavior.In evaluating the scalability of connection-level parallelism, one

measure of interest is the aggregate throughput of the system. Another important

measure of performance, however, is the throughput seen by individual connections.

We determine how aggregate throughput is distributed across connections in our im-

plementation. We find that in many cases throughput isnot distributed fairly among

connections, or threads. We therefore investigate whether the scheduler, memory

reference behavior, or both play a role in any unfairness in the system.

• Suitability for continuous media applications.In some applications, servers will

need to “play out” continuous media data (e.g., voice and video), at a rate which

closely matches the rate at which it was originally recorded. In such applications,

the server protocol stack is one link in a chain of subsystems which must support

a fixed rate (either relative or absolute) in terms of communication bandwidth. We

will determine and evaluate what features must be included in a protocol stack and

scheduler to support continuous media applications.

All of these issues will be explored using our implementation of connection-level par-

allelism running on a shared-memory multiprocessor. The guiding theme of this research

will be to assess experimentally the suitability of connection-level parallel protocols to

supporting the applications driving the evolution of the Internet.
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1.1.2 Motivation for Scalable Wireless Sensor Networks

Over the next several years, wireless sensor networks will enable many new data-

intensive sensing applications, ranging from environmental and infrastructure monitoring

to commercial and industrial sensing. Networks of small, possibly microscopic sensors

embedded in the fabric of our surroundings: in buildings, warehouses, and machinery, and

even on people, will drastically enhance our ability to monitor and control our physical

world. However, the realization of wireless sensor networks requires practical satisfaction

of a number of real-world constraints introduced by factors such as scalability, reliabil-

ity, cost, hardware, topology change, environment, and perhaps most importantly, power

consumption. Examples of embedded sensor network based applications include urban

structure monitoring, contaminant transport monitoring, habitat monitoring, and military

surveillance.

There are many performance metrics of interest for sensor networks. We focus on two

that are common to the vast majority of sensor networks:

1. Theaccuracyof the data acquired by the application from the sensor network; and

2. the totalsystem end-to-end delayincurred in the sequence of operations needed for

an application to obtain sensor data.

Although almost all sensor network applications have performance requirements that in-

clude accuracy and system delay, their relative importance may differ between applications.

We therefore define thequalityof the data service provided to sensor network applications

to be a combination of accuracy and delay. As in most systems, improved quality comes

at somecost. For current wireless sensor networks, the most important component of cost

typically is the energy consumed in providing the requested data. In turn this is domi-

nated by the energy required to transport messages through the sensor field. (e.g., requests,

replies, updates, etc.). This cost versus quality trade-off has recently been an active area of

research [15, 121, 124, 129, 138].
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In the second part of this thesis, we explore wireless sensor network cost and quality

performance when a cache is placed in a sensor field gateway server. To perform this

research, we construct a sensor network model. We then develop novel policies for caching

sensor network data values in the gateway server, and then retrieving these values via cache

lookups. We also propose a new objective function for data quality that combines accuracy

and delay. Finally, we use our sensor network model to assess the impact of several factors

on cost and quality performance:

• Our caching and lookup policies; the

• relative importance of data accuracy and system end-to-end delay; and the

• rate and magnitude of change in sensed data values in the environment.

This assessment evaluates seven different caching and lookup policies by implementing

them in a simulator based on CSIM 19 [120, 119]. We focus on four issues in our assess-

ment:

• When is a cost vs. quality trade-off present?Recall that quality incorporates both

accuracy and delay. The benefit and cost of different caching and lookup policies

therefore varies with how quality is specified for a given sensor network application.

We present results for sensor networks where user queries are generated for a set of

discrete locations within each sensor field. We show that for some quality require-

ments, policies that prevent cache misses by computing and returning approximate

values for sensor data yield a simultaneous quality improvement and cost savings.

• When present, what is the form and magnitude of the cost vs. quality trade-off?

Within the design space of our seven caching and lookup policies, five of the seven

policies age and then delete cache entries uniformly based on an age threshold pa-

rameter,T. We observe that in many system configurations these five policies expose

a linear cost vs. quality trade-off. Furthermore, when this linearity is not present, the
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performance differences between our policies, in terms of both cost and quality, can

be small.

• In what way does the manner in which the environment changes impact performance?

Intuition suggests that augmenting the data acquisition process for a sensor network

application with a cache will work well if the phenomenon being monitored is slowly

changing. On the other hand, if the phenomenon being monitored changes quickly,

caching might not work well. We assess to what extent this intuition is correct by

varying the frequency at which the values in the environment being monitored change

relative to the query rate.

• How does changing the age threshold parameter for cache entries affect perfor-

mance?For the caching policies that we propose and evaluate, the cache hit ratio

for a given workload can be increased by increasingT. The converse is also true.

The cache hit ratio can be decreased by decreasingT. We determine how cost and

quality performance are impacted asT is changed by two orders of magnitude. We

also compare these results with two important baseline policies: First, an empty

cache that never yields a hit. We refer to this as an “all misses” baseline, which is

equivalent to any of our policies whereT = 0. Our second baseline is a cache that

has an entry for every location, however, no cache entry is ever updated. This is an

“all hits” baseline, which is equivalent to any of our policies forT = ∞. Although

this second baseline provides a useful point of comparison for our results, it is clearly

not a caching and lookup policy that is useful in practice without augmenting it with

a mechanism to update cache entries.

1.1.3 Bringing Together Scalable Networked Servers and Wireless Sensor Networks

This dissertation investigates related research issues in two very different domains. The

innovations that yield our main results are server policies and mechanisms for communi-

cating with a large number of clients within each of these domains. In the first domain the
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server is the data source. Specifically, we analyze a large-scale networked server delivering

data to a large number of clients over a high-bandwidth network. In the second domain,

our servers are data sinks: Embedded servers are acquiring sensor data from resource-

constrained wireless sensor networks. Important applications in our first area of research

include delivering web content, video, e-business services, music, etc. Emerging appli-

cations in our second area include environmental monitoring, military surveillance, and

homeland security.

The common threads within these two areas of research are:

• A focus on server architecture;

• Novel techniques for performing data management within the server;

• Communication with clients that are remote with respect to the server; and

• Policies and mechanisms that directly address application requirements.

There are also important differences between these two areas of research.

Our research on scalable networked servers is important for high-performance applica-

tions. In these applications the volume of data being handled is relatively large, the data

is being delivered to many clients, and the network packets being sent are large. The data

sources for these applications are files that are stored on local disks. Therefore, the poli-

cies and mechanisms we propose best service a data path that begins at the disk subsystem

and ends at the network interface. The data management within our scalable networked

server delivers high throughput to web-based applications; and fixed rates per connection

to continuous media applications.

Our research in wireless sensor networks is focused on embedded applications for mon-

itoring and control. This means that the volume of data being handled can be large or small,

and that sensor data queries and replies are sent in packets that are transmitted through the

sensor field. The data sources for these applications are also remote with respect to the data
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server. Since acquiring data requires communication over a resource-constrained wireless

sensor network, conserving resources in the sensor field is the main goal of our data man-

agement policies and mechanisms. We therefore implement a data cache within our sensor

network data server and examine its benefits and costs.

1.2 Scalable Networked Servers Background

The research issues we investigate in the first half of this thesis center around the per-

formance of a multiprocessor information server. Such a server communicates with clients

throughout a wide-area network, which is potentially global. We briefly describe how this

communication is accomplished by using the Internet protocols as an example.

Figure 1.1 shows a wide-area network (WAN) where a small number clients are com-

municating with a multiprocessor server. Data packets carrying information between clients

and the server are routed through the WAN using switches and routers. At the edge of the

network, clients and servers typically connect to the WAN via a local-area network (LAN).

Thus, packets sent from a client to server traverse the LAN to get to the WAN. In the reverse

direction a LAN also connects the server to the WAN.

In order for a client to communicate successfully with the server, they must both use

protocols (organized in a so-calledprotocol stack) which can interoperate. Over the Inter-

net, these protocols typically include transport protocols such as the Transmission Control

Protocol (TCP) and the User Datagram Protocol (UDP). Figure 1.2 shows an example of an

Internet protocol stack which includes both TCP and UDP. The stack organization concep-

tually layers protocols on top of each other. Applications sit at the top of the protocol stack

(e.g., the World-Wide Web server or Audio / Video server in Figure 1.2). Beginning at the

lowest layer and moving up the stack, each protocol introduces features and services which

(hopefully) match the application’s communication requirements at the transport protocol

layer. We now describe the features and services of the protocols below the applications

shown in Figure 1.2.
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Figure 1.1. Clients and Server Communicating over Wide-Area Network.

Figure 1.2. Example Protocol Stack.
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UDP is a connectionless transport protocol which provides multiplexing for applica-

tions sending data and demultiplexing for applications receiving data. It provides error

detection in the form a checksum over the data, but no additional reliability. Thus, data that

is sent over a UDP-based protocol stack can be lost or even duplicated.

TCP is a connection-oriented protocol which also provides multiplexing and demulti-

plexing. TCP is a much more complex protocol than UDP. It provides reliable, in-order,

data delivery with no loss, error, or duplication. Thus, it presents the abstraction of a bidi-

rectional virtual circuit between the application at the client and server.

The Internet Protocol (IP) is mainly responsible for routing data through the network.

On the client and server in Figure 1.1, it is the protocol which knows the identity of the

switch or router which connects the local-area network to the wide-area network.

Gigabit Ethernet (GbE) is a standard high-speed local-area network access protocol. Its

main function is to arbitrate access to the network which takes the form of a star or a bus

in a GbE network.

1.2.1 Parallelism in Network Processing

Many approaches to parallelizing network protocols have been proposed and are briefly

described here; additional surveys can be found in [14, 53, 118]. In general, we attempt

to classify approaches by the unit of concurrency, or what it is thatprocessing elements

do in parallel. Here a processing element is a locus of execution for protocol processing,

and can be a dedicated processor, a heavyweight process, or lightweight thread. Figure 1.3

illustrates the various approaches to concurrency in host protocol processing. The dashed

ovals represent processing elements. The large rectangles represent protocols. Messages

marked with a number indicate the connection with which the message is associated.

In functional parallelism, a protocol stack’s functions are the unit of concurrency. Func-

tions (e.g., checksum and ACK generation, or send and receive processing) are decom-

posed, and each assigned to a processing element. Performance gains in throughput, are
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Figure 1.3. Approaches to Parallelism.
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achieved through pipelining effects. However, gains in latency are possible if different

functional units process the same packet in parallel (e.g., as in [78, 77]). The advantage of

this approach is that it is relatively fine-grained, and therefore exhibits a high degree of con-

currency. Its main disadvantage is that it requires synchronization between functions, and

is inherently dependent upon the concurrency available among the functions of a protocol

stack [71, 78, 77, 143]. To address this disadvantage, researchers have focused on combin-

ing and splitting functions to reduce synchronization and balance the work performed by

different processing elements [18, 20, 55, 75, 78, 77, 96, 143].

A special case of functional parallelism, which we calllayer parallelism, makes each

protocol layer a unit of concurrency [50, 69]. Protocol layers are assigned to processing

elements, and messages are passed between layers through interprocess communication.

The main advantage of layered parallelism is that it is simple and defines a clean sepa-

ration between protocol boundaries. The disadvantages are that concurrency is limited to

the number of layers in the stack, and performance on a shared-memory processor is ham-

pered by context-switching and synchronization overhead incurred while crossing protocol

boundaries [118]. Since concurrent processing of packets by different layers is often not

possible, performance gains for layer parallelism are limited to throughput.

In packet-level parallelism, the packet is the unit of concurrency. Sometimes referred

to as thread-per-packet or processor-per-message, packet-level parallelism assigns each

packet or message to a processing element. The advantage of this approach is that packets

can be dispatched to any processing element, regardless of their connection or where they

are in the protocol stack, achieving speedup both with multiple connections and within a

single connection. The disadvantage is that it requires locking shared state, most notably

the protocol state at each layer. Systems using this approach include [14, 53, 65, 67, 95].

A set of connections forms the unit of concurrency inconnection-level parallelism

[49, 110, 116, 118]. Speedup is achieved using multiple connections, which can poten-

tially be processed in parallel. The advantage of this approach is that it exploits the natural
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concurrency between connections. For each set of connections which form a unit of con-

currency, all or part of the protocol stack is treated as a single critical section requiring

one synchronization variable. Thus, locking is kept to a minimum along the “fast path” of

data transfer. The disadvantage of connection-level parallelism is that concurrency within

a single connection can only be achieved by introducing locks (and therefore overhead) at

asynchronous interfaces in the protocol stack [49].

The relative merits of one approach over another depend on many factors, including the

host architecture, the cost of primitives such as locking and context switching, the work-

load and number of connections, the thread scheduling policies employed, and whether the

implementations are in hardware or software.

The most comprehensive study to date comparing different approaches to parallelism

on a shared-memory multiprocessor is by Schmidt and Suda [118]. This work suggests

that packet-level parallelism is preferable when the workload is a relatively small number

of active connections, and that connection-level parallelism is preferable when the number

of connections approaches the number of processors. We describe these results in more

detail in Section 2.6.

1.3 Wireless Sensor Networks Background

Almost all sensor network deployments have three main components:

1. One or more sensor fields consisting of sensor field nodes that communicate with one

or more base stations;

2. One or more data servers (or gateways) that accept requests for sensor data and gen-

erate replies for these requests; and

3. One or more monitoring and control centers that are connected to the appropriate

sensor data servers via a backbone network.
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Figure 1.4. Sensor Network Deployment Example.

Figure 1.4 shows an example of such a deployment with two sensor fields, one data server,

and one monitoring and control center. If the data server shown in this figure is augmented

with storage, it can store and cache sensor field values. The data server receives these values

either synchronously via replies to requests for sensor field data, or asynchronously via

updates or alerts from sensor field nodes. In such systems, one or more driving applications

in the monitoring and control centers retrieve sensor data that is disseminated from sensor

fields. As data is consumed by these applications, is has an associatedquality that is a

function of two parameters: (1) thedelayexperienced in receiving the data, and; (2) the

deviationbetween thevalueof each data item and the corresponding data in the sensor field.

Acquiring sensor data typically also has acostthat reflects the system resources consumed

in querying and delivering the data to the applications.

It is helpful to view the subsystems in a sensor network using a reference model. We

have already done this for a wide-area network and protocol stack in Section 1.2. Figure 1.5

shows a mapping from the OSI reference model to the conceptual layering of the software

and hardware for a sensor network.

In the second part of this thesis, we will explore the benefits and costs of caching in

the Data Services layer shown in Figure 1.5. If a cache is effective at this layer, it has the

potential to improve application performance. One way this improvement is accomplished
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Figure 1.5. Conceptual Layering of Sensor Network System.

is by reducing the number of queries that enter the sensor field while not sacrificing too

much accuracy in the replies that are returned to applications.

The caching approaches we propose are designed to be general since they make no

assumptions about whether the overall sensor network architecture uses a structured or

unstructured data model. In other words, our approaches are independent of the imple-

mentation of the Database layer in Figure 1.5. The database could implement a structured

schema that extends a standard like the Structured Query Language (SQL). The TinyDB

and Cougar systems both advocate this approach [35, 82]. However, the schema could

also be modified while the system is running (e.g., IrisNet [51] uses XML and XPATH to

accomplish this). The Database layer might also expose a low-level interface to the appli-

cation. Directed Diffusion [64] does this by allowing applications to process attributes or

attribute-value pairs directly.
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1.3.1 Data Acquisition and Delivery in Sensor Networks

Figure 1.6 shows how queries and replies are processed by a sensor field gateway or

data server. A query that specifies a target locationl i (i.e., requests the value of the sensor

field at locationl i) first enters the sensor network query queue and is then forwarded to

the sensor field itself. The sensor (or sensors) that monitor locationl i generate a reply that

contains (at least)l i , the sensor field value at this location,vi , and the time at whichvi was

recorded atl i , ti . The sensor field reply is then forwarded to the monitoring and control

center (not shown) via the gateway reply queue. We say that thesystem end-to-end delay,

Sd, for this query-reply sequence occurs between the pointsQuerym and Replym in this

figure. Furthermore, we definevalue deviation, Dv, as the unsigned difference between the

value inReplym and the true value atl i at the instant in time whenReplym leaves the gateway

reply queue. This definition of value deviation was originally proposed by researchers at

Stanford [99, 102].

Figure 1.6. Sensor Field, Sensor Network Data Server, and Query-Reply Data Path.
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Our model for the data quality delivered to sensor network-based applications captures

the fact that the quality improves with lower system delay and lower value deviation (i.e.,

lower values ofSd andDv). Our model for the cost of querying for sensor data values

captures that fact that transporting messages in the sensor field consumes what is typically

the most important resource in wireless sensor networks, namely power. Specifically, the

cost to send a query or reply in the sensor field is a function of the square of the distance

between a sensor and the nearest edge of the sensor field.

Consider the impact of adding a cache to the data management performed at a sensor

network data server. Figure 1.7 shows such a system in which a cache is added to the

internal architecture of the data server, on the “border” between the sensor field(s) and the

backbone network.

Figure 1.7. Sensor Network Data Server or Gateway with a Cache.

With the introduction of a cache in Figure 1.7, there are now two possible data paths

that can be traversed in response to a query from the backbone network:
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• For a cache miss, the data path is almost exactly the same as the one described for

the query-reply sequence in Figure 1.6. The only additional work performed along

this path is what is necessary to update the cache. To update the cache, each sensor

data valuevi is copied into a cache entry. A cache entry,eli , associates with location

l i , the most recent value observed at this location, and its timestamp into the tuple

〈l i ,vi , ti〉.

• The data path for a cache hit is much shorter than for a cache miss. For example,

if the cache is indexed by location, and a cache entry is present for a locationl i

specified in a query, a reply can be generated using only the information in the tuple

that corresponds tol i . Since the processing required to perform this cache lookup

and generate a reply is relatively small, we assume that the system delay for a cache

hit (Sd betweenQuerym andReplym) and its associated cost are both zero. We also

determine the value deviation for cache hits,Dv, in the same way as for cache misses:

by computing the unsigned difference between the data value inReplym and the true

value atl i whenReplym leaves the gateway reply queue.

Since each cache hit in the data server provides a cost savings and at least partially

benefits quality (by reducing delay), our caching and lookup policies explore data manage-

ment approaches for our cache that increase the effective cache hit ratio. Specifically, we

exploit spatial locality within sensor field data, and in some caching and lookup policies

allow cache “hits” in which the value at locationl i is approximated based on valuesvi′

from neighboring location(s){i′ ∈N(i)}. (HereN(i) denotes the neighborhood of location

l i .) We develop and describe three such policies that implement what we callapproximate

lookups and queries. We compare these approximate policies with fourpreciselookup and

query policies that only use information associated with locationl i to process queries that

reference locationl i .

The definition of acache hit(vs. a cache miss) for approximate lookup and query

policies has both similarities and differences with the traditional definition of a cache hit (or
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miss). One similarity is that the data value in the cache may be consistent with the value in

the sensor field. This would always be true for a memory cache for a uniprocessor computer

[23], or for a sequentially consistent multiprocessor [46]. A related similarity is that the

data value in the cache may be different from the value in the sensor field. This would also

be the case, some of the time, in a distributed file system that caches blocks or files [59], or

a web-based application that exploits web caches [81]. These similarities are also shared

with the precise lookup and query policies. An important difference from these traditional

caching systems is that the cache lookup policy itself might introduce some inconsistency

(e.g., value deviation). This is because our approximate policies may emulate a cache hit by

approximating a data value in the sensor field (using neighboring values) rather querying

the sensor field for the missing value.

Recall that all of the caching and lookup policies we propose and evaluate incorporate

an age threshold parameterT that specifies how long each entry is stored in the cache.

In practice, picking a good value forT depends on how rapidly the environment being

monitored might change, and the utility of a cached entry as it approaches beingT seconds

old. If T is too small, it is easy to imagine that the cache might not be effective. IfT

is too large, then the cache may be helpful in terms of saving cost, but may be harmful

when value deviation increases as a function of elapsed time. Clearly, larger values ofT

reduce the number of messages that are sent through the sensor field. We confirm this

intuition, and quantify the peak query rate for our sensor field as a function ofT. Since

power consumption in the sensor field is a function of query rate, bounding our sensor field

query rate can help bound the cost consumption for our caching and lookup policies.

We determine under what conditions the data management approaches we have sum-

marized thus far exhibit a cost versus quality trade-off. When this trade-off is present,

we characterize both its form and magnitude. Within these results, we also answer the

following questions:
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• Which policies provide best cost versus quality when value deviation is more impor-

tant than delay?

• Which policies provide best performance when delay is more important than value

deviation?

• How does the manner in which the environment changes impact cost and quality

performance?

• How does varying the age threshold parameter for cache entries impact performance?

Our results show that different caching approaches should be used depending on the

application requirements and the characteristics of the environment and sensor network.

We show that approximate lookups and queries can provide a simultaneous improvement

in both cost and quality. When there is a trade-off between cost and quality, this trade-off

is linear. We also identify a class of caching and lookup policies for which the sensor field

query rate is bounded when servicing an arbitrary workload of user queries. This bound

is achieved by having multiple user queries for sensor data share the cost of a sensor field

query.

1.4 Contributions of this Dissertation

The following are the contributions of the first part of this dissertation:

• Scalability of connection-level parallelism.The first part of this dissertation be-

gins by describing our implementation of connection-level parallelism, and exper-

imentally determining how throughput scales with the number of processors, and

how throughput changes as the number of connections increases. We show that

connection-level parallel protocol stacks scale well with the number of processors.

Furthermore, the throughput delivered is, for the most part, sustained as the number
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of connections increases. We also show that for moderate to large numbers of con-

nections, the number of threads in the system and the number of connections assigned

to each thread are the key factors in determining performance on a multiprocessor.

• Fairness behavior of connection-level parallelism.We then investigate how aggre-

gate throughput is distributed across connections in our implementation of connection-

level parallelism. We find that in many cases throughput isnot distributed fairly

among connections, or threads. We show that matching the number of threads to

the number of physical processors, while scheduling connections assigned to each

thread (or virtual processor) in a round-robin manner, yields the best fairness be-

havior. However, an improvement in fairness may come at the cost of aggregate

throughput. Our results also show that the differences in the per-connection (as well

as per-thread) throughput can be explained by the combined effects of scheduling

and memory reference behavior.

• Suitability for continuous media applications.In the next chapter of this thesis we

assess the suitability of connection-level parallelism (CLP) for supporting continu-

ous media applications. We present results for a new technique, calledthroughput-

based scheduling, that includes a mechanism in which threads monitor and report

per-connection throughput to the scheduler. To support soft throughput guarantees,

the scheduler balances load by reallocating work (in this case connections) among

threads. To support hard throughput guarantees, the scheduler schedules threads ac-

cording to their “utilization” (i.e., how much of their current capacity is consumed

by the throughput they have been assigned to deliver). Using UDP as the transport

protocol, we show that throughput-based scheduling is suitable for supporting con-

tinuous media applications.

The following are the contributions of the second part of this dissertation:
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• Necessary conditions for a cost vs. quality trade-off.We measure the benefit and cost

of seven different caching and lookup policies as a function of the application quality

requirements. We show that for some quality requirements (i.e., when delay drives

quality), policies that emulate cache hits by computing and returning approximate

values for sensor data yield a simultaneous quality improvement and cost savings.

This win-win is because when delay is sufficiently important, the benefit to both cost

and quality achieved by using approximate values outweighs the negative impact on

quality due to the approximation. In contrast, when accuracy (i.e., value deviation)

drives quality, a cost vs. quality trade-off emerges. When this trade-off is present, dif-

ferent policies perform best depending on whether quality or cost is most important

to the application.

• Form and magnitude of the cost vs. quality trade-off.For our seven caching and

lookup policies, five of these policies age and then delete cache entries uniformly

based on the age threshold parameter,T. We observe that in many system configura-

tions these five policies expose a linear cost vs. quality trade-off. When this linearity

is present, we find that the underlying cost vs. accuracy and/or cost vs. delay func-

tions are also linear. When this linearity is not present, the performance differences

between our policies, in terms of both cost and quality, can be small. When this is

true, we also observe that the cache hit ratios for our policies are close in value.

• Bounded cost for some caching and lookup policies.For applications that require

bounded resource consumption, we identify a class of policies for which the sensor

field query rate can be bounded when servicing an arbitrary workload of user queries.

Recall that the domain for our user queries is the set of discrete locations in the sensor

field. This upper bound is a function of two variables: (1) the number of locations in

each sensor field (these locations are also used to index the cache) and; (2) the age

threshold parameter (T).
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• Impact of the manner in which the environment changes on cost and quality perfor-

mance.Intuition suggests that augmenting the data acquisition process for a sensor

network application with a cache will work well if the phenomenon being monitored

is slowly changing. On the other hand, if the phenomenon being monitored changes

quickly, caching might not work well. We assess to what extent this intuition is cor-

rect by varying the frequency at which the values in the environment being monitored

change relative to the query rate. Furthermore, our results characterize and quantify

cost and quality performance for two different sensor fields, which each monitor

environments with different characteristics. These results show that the form and

magnitude of the cost and quality performance change, however, the performance

trends generally remain the same. Specifically, the performance differences between

policies change, but the policies that provide the best quality (and cost) performance

in different system configurations are usually the same.

• Effect of the age threshold parameter policy for cache entries on performance.For

the caching policies that we propose and evaluate, the cache hit ratio for a given

workload can be increased by increasingT. The converse is also true. We determine

how cost and quality performance are impacted asT is changed by two orders of

magnitude. We also compare these results with “all misses” and “all hits” baseline

policies. We see that for high cache hit rates (e.g., 88% and higher for the cases

we consider) the cost performance of all of our five age-based policies converges

toward the “all hits” baseline performance. In contrast, for low cache hit rates (32%

and lower) the performance of some (but not all) of our policies is clustered near

the (cost, quality) point associated with the “all misses” baseline. When this is true,

we also see an interesting negative result: Unless cost is much more important than

quality, some of the caching and lookup policies exhibit worse performance than

having all misses. However, a cache with a positive hit ratio always provides some

cost savings.
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1.5 Structure of this Dissertation

The remainder of this thesis is organized as follows: Chapter 2 describes connection-

level parallelism in more detail and identifies the impact of implementation alternatives

on scalability. In Chapter 3, we investigate the fairness behavior of our implementation.

Chapter 4 explores the protocol stack and operating system features required to support

continuous media applications. Chapter 5 describes our caching and lookup policies, and

investigates their cost and quality performance for wireless sensor networks. Finally, Chap-

ter 6 summarizes the dissertation and suggests several possible avenues for future work.
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CHAPTER 2

SCALABILITY OF CONNECTION-LEVEL PARALLELISM

2.1 Introduction

In this Chapter of the thesis, we experimentally evaluate connection-level parallelism

in a number of previously unexamined dimensions. We focus on several issues in our

performance evaluation:

• How throughput scales as processors are added.

• How throughput changes as connections are added.

• The effect of the granularity of parallelism on performance.

• The effect of the transport protocol on performance.

• The impact of processing packets in bursts.

Our evaluation of connection-level parallelism is performed for both TCP/IP and UDP/IP

protocol stacks, implemented using thex-kernel [63]. Our implementation runs in user

space on a shared-memory Silicon Graphics (SGI) Challenge multiprocessor [48].

Our main contribution here is to demonstrate that connection-level parallel protocol

stacks scale well with the number of processors for both send-side and receive-side com-

munication. Furthermore, the throughput delivered is, for the most part, sustained as the

number of connections increases. We also show that for moderate to large numbers of con-

nections, the number of threads in the system and the number of connections assigned to

each thread are the key factors in determining performance on a multiprocessor.
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2.2 Connection-Level Parallelism

Connection-level parallelism is essentially the synthesis of two ideas: the first is extend-

ing the notion of a connection through the entire protocol stack, even down to the device;

the second is running these multiple connections in parallel.

Figure 2.1. Protocol Stack Configurations.

Figure 2.1(a) shows a conventional protocol stack, where protocols and connections are

multiplexed on top of other protocols and connections. In this Figure, a TCP connection

and a UDP connection multiplex the IP protocol. On the receive path, IP demultiplexes

incoming packets to the appropriate protocol.

Figure 2.1(b) shows a connection-level parallel protocol stack. In this example, the

TCP and UDP connections extend all the way down to the device. Protocols are concep-

tually replicated, and multiplexing occurs at the lowest layer of the protocol stack. On the

receive path, a packet is immediately demultiplexed to the appropriate connection. This

demultiplexing is performed by a packet filter or classifier [9, 88, 91, 139].

Given a set of connections, threads, and processors, the assignment or mapping be-

tween them can be done in a number of different ways. Choosing a mapping defines the
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granularity of a connection-level parallel implementation. Previous work on connection-

level parallelism can be found in references [49, 110, 116, 118] has focused on relatively

static assignments of connections to processes. One novel aspect of our implementation

is that it allows us to vary the mapping between processors, connections, and threads. We

introduce the abstraction of avirtual processor, which allows us to vary this assignment,

and thus examine how structural choices affect performance.

Figure 2.2. Approaches to Connection-Level Parallelism.

The simplest and most coarse-grained approach to connection-level parallelism ispro-

cessor per connection(PPC), which associates each connection with an individual proces-

sor. Figure 2.2(a) shows an example where 8 connections are mapped to 2 threads, which

are each bound to their own processor. Ovals in this Figure denote units of concurrency.

Thus, only one thread at a time can perform protocol processing for each of the 2 sets of

4 connections in Figure 2.2(a). PPC has the advantage of simple implementation, but may

not balance load well when some connections are more active than others.

The most fine-grained approach,thread per connection(TPC), makes each connection

its own unit of concurrency. Figure 2.2(b) shows an example of TPC with 8 connections and

8 threads for sending data. These threads are free to execute on either of the two processors,
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and perform protocol processing on behalf of any of the connections. In practice, however,

each connection is typically associated with an individual thread [49, 116]. While TPC

allows easy load balancing, it may not scale well with large numbers of connections, since

each thread must be allocated resources (such as a thread control block and a stack).

Our implementation facilitates varying the mapping of connections to threads and pro-

cessors by using virtual processors. Connections are assigned to virtual processors, rather

than physical processors or threads, in what we callvirtual processor per connection

(VPPC). Instead of a connection, the notion of a virtual processor (which corresponds

to one or more connections) is extended down through the protocol stack, all the way to

the device. Figure 2.2(c) shows an example where 8 connections are assigned to 4 virtual

processors on 2 physical processors. As with thread per connection, threads are free to

execute on either of the two processors, and perform protocol processing on behalf of con-

nections assigned to any of the four virtual processors. If the number of virtual processors

is the same as the number of connections, VPPC yields the same (maximal) concurrency as

thread per connection. If the number of virtual processors matches the number of physical

processors, (and threads are wired to physical processors), then VPPC is equivalent to PPC.

Another way of thinking of VPPC is that it extends thread per connection to support

multiplexing a set of connections onto a pool of threads, where the number of threads

can be varied. This becomes important if one considers a server supporting thousands of

connections. Since each thread requires resources (and increases the cost of scheduling),

it is easy to imagine that TPC won’t scale as well as VPPC (or even PPC) under such

conditions.

At first glance, a virtual processor may seem synonymous with a thread. However, there

are important differences. A virtual processor defines a unit of concurrency, not a specific

thread. For example, on the send side, an application thread might be “borrowed” to run on

a virtual processor in order to deliver data to the device. Conversely, on the receive side, a
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thread dispatched from a lower layer in the protocol stack would run on a virtual processor

to deliver data to the application.

2.3 Implementation and Experiments

In order to study the performance of connection-level parallelism (CLP), we have im-

plemented multiprocessor versions of the core Internet protocols (TCP, UDP and IP) over

Gigabit Ethernet (GbE), running in a version of thex-kernel which was extended to sup-

port CLP. This section describes the important features of our parallelizedx-kernel and

protocols. In the last part of this section, we describe our experimental design.

2.3.1 Connection-Level Parallelx-Kernel

In our implementation of connection-level parallelism, concurrency control is accom-

plished by having a semaphore for each virtual processor. To execute protocol code on

a virtual processor, a thread must acquire the appropriate semaphore. Once running on a

virtual processor, a thread runs to completion, as in the originalx-kernel [63].

One innovative feature of our implementation is that there are no locks on the fast path

through the protocol stack, on either the send or receive side (once packets have been de-

multiplexed to the appropriate virtual processor). This is in contrast to earlier implementa-

tions [14, 95, 110, 118] in which data structures are locked on the fast path. We accomplish

this by replicating data structures on a per virtual processor basis where possible. Thus,

threads which require exclusive access to an object merely look up their current virtual

processor identifier, and use it to index into an array of replicated objects. Locking is not

necessary since only one thread at a time can be executing on a particular virtual processor.

Examples of data structures which we are able to replicate includex-kernel demultiplexing

hash tables, TCP send buffer free lists, and IP datagram identifier counters.

It is important to point out that not all data structures can be replicated. For example,

TCP connections must be uniquely instantiated. Thus, our CLP implementation requires a
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packet filter mechanism to demultiplex received packets to the appropriate virtual proces-

sor for a TCP (or UDP) connection. Packet filters are becoming more popular (and efficient

[9, 139]) in contemporary operating systems since early demultiplexing yields other per-

formance gains. For example, depositing received packets directly into application buffers

avoids copying data [42, 83, 128]. Our use of a packet filter, to demultiplex to the appropri-

ate virtual processor, simply leverages this existing mechanism for an additional purpose.

2.3.2 Connection-Level Parallel Protocols

Our Internet protocols are all based on the uniprocessor implementations distributed

with the December 1993 version of thex-kernel. In addition to modifying them for connection-

level parallelism, we made two other important changes to these protocols. First, we up-

dated the TCP code to be current with the Berkeley 4.4Lite implementation, excluding the

RFC 1323 extensions [66]. We also replaced the Internet checksum code with the fastest

available portable algorithm that we were aware of, which was from UCSD [72].

We also implemented a connection-level parallel version of UDP. Even though UDP is a

connectionless protocol, we consider long term associations between a sender and receiver

to be a “connection”, or flow [32]. A UDP association is used to map connections to virtual

processors, and provides a handle for demultiplexing, in the same fashion as TCP.

Since we did not have access to a device which matches the performance of our pro-

tocols, we replaced the lowest level drivers in thex-kernel with in-memory device drivers

for both the TCP and UDP protocol stacks. The drivers emulate a GbE interface capa-

ble of operating at memory speeds (i.e., faster than 1 Gbps), and transfer packets that are

slightly larger than 4 KB. This approach is similar to the those used by other researchers

[14, 53, 79, 95, 118].

In our experiments, we assume that a connection always has data to send (i.e., each

connection is an infinite data source). Therefore, the drivers act as peer senders or re-

ceivers, producing or consuming packets as fast as possible. This simulates the behavior of
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a collection of clients sending or receiving data over simplex connections routed through

an error-free network. To minimize experimental perturbation, the receive-side driver uses

preconstructed packet templates. To simulate an actual sender, this driver should compute

the Internet checksum and update the template (for TCP). Instead, a dummy checksum

value is left in the template and the TCP or UDP receivers compute the checksum, but

ignore the result.

Figure 2.3. TCP Send-Side Configuration.

Figure 2.3 shows an example of a test configuration. The example is of a send-side

TCP throughput test, where a simulated TCP receiver sits below the GbE layer. The simu-

lated TCP receiver generates acknowledgments for packets sent by the actual senders. The

driver acknowledges every other packet for each connection, thus mimicking the behavior

of Berkeley TCP when communicating with itself as a peer. Since spawning threads is

expensive in user space in IRIX, the driver “borrows” the stack of a calling thread to send

an acknowledgment back up.
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The TCP receive-side driver (i.e., simulated TCP sender) produces packets in-order

for consumption by the actual receiver. Both simulated TCP drivers also perform their

respective roles in setting up a connection.

2.3.3 Experimental Design

To evaluate our CLP implementation, we ran experiments for both TCP/IP and UDP/IP

protocol stacks. In addition to the protocol stack being measured, several other parameters

define an experiment: the number of physical processors, virtual processors, and connec-

tions; whether the multiprocessor is the sender or receiver; and whether or not the checksum

is computed.

The throughput data from each experiment (both aggregate and per-connection) are

calculated from the average of 12 runs, where a run consists of measuring the steady-state

throughput of packets carrying 4KB of user data for 45 seconds, after an initial warm-up

period of 45 seconds or more. For all data we present in figures, we show 90% confidence

intervals. During experiments, we isolated our machine as much as possible by disallowing

other user activity and removing all non-essential daemons. We now discuss some of the

more subtle aspects of our experiments.

Our experiments use a thread for each virtual processor to produce and send or receive

packets. The protocol processing associated with connections assigned to the same virtual

processor is performed in a round-robin manner among connections, with the unit of work

being the processing needed to bring a single packet (or a burst of packets) up or down the

protocol stack. Between processing each unit of work, the virtual processor is yielded to al-

low other tasks (e.g., TCP timers) to run on that virtual processor. However, the scheduling

of threads running on virtual processors is controlled by the IRIX operating system.

In some of our results, we present average per-packet latency (as well as throughput)

over the 45-second sampling period, for each individual thread. We compute latency using

Little’s law from the measured throughput for the thread, the actual wall-clock time, and the
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user time given to the thread by the operating system. The user time for a thread represents

the time spent executing, and therefore processing packets, in user space. This is obtained

by making agetrusage() system call at the beginning and end of the sampling period.

It is well known that memory reference behavior can be crucial in determining how

a system performs when running on a multiprocessor. We control the memory reference

behavior of our protocols in several ways. First, to capture the cost of loading packets

with user data, each sending connection copies data from a statically allocated 4KB page

to a page-alignedx-kernel communication buffer. For receiving connections, the copy is

performed in the reverse direction. Other than this copy, we do not attempt to capture any

computation or memory references associated with an application.

For send-side experiments, we always cache communication buffers in LIFO lists.

These lists are maintained per virtual processor, and therefore require no locks. This tech-

nique has been shown to improve throughput in protocol stacks running on a uniprocessor

[43]. This means that our send-side experiments measure either a cache-to-cache or a

memory-to-cache copy depending on the fate of the “application” data buffer in the caches.

For receive-side experiments, it is unreasonable to assume that user data will be in the

cache, so we wire threads to processors and force any user data referenced for the first time

to be fetched from memory and not from processor caches. To implement this, threads al-

locate receive-side buffers (pages) from a per physical processor circular list which is twice

as large as the second-level caches on our multiprocessor. Unfortunately, managing this list

introduces locking overhead, which unfairly penalizes throughput experiments where there

are more virtual than physical processors. We therefore only present receive-side results

for processor per connection.

In experiments where we vary the number of processors, we use IRIX’spset facility,

which restricts the threads in a process group to running on a subset of processors.

We report results from an evaluation of our connection-level parallel implementation

along three different dimensions. First, we examine how aggregate throughput scales as
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the number of processors increases. Second, we examine how throughput is affected by

the number of connections. In Chapter 3, we investigate how fairly the total throughput is

distributed across both moderate and large numbers of connections.

To quantify fairness, we measure the throughput seen by each connection and vir-

tual processor, and compute percentiles between the maximum and minimum throughputs.

Since our fairness experiments use a single thread per virtual processor, our results refer

to per-thread (or per-connection) throughput, or throughput per thread (or connection). In

contrast, we refer to aggregate (or total) throughput as just throughput.

2.4 Throughput Scalability with Respect to Processors

To evaluate how throughput scales with the number of processors we ran experiments

varying the number of physical processors from 1 to 20, and bound a single connection to

each processor using our processor per connection implementation.

Figure 2.4 shows throughput versus number of processors (and connections) for both

TCP and UDP protocol stacks. In these experiments buffers are “written” on the send side

by repeatedly copying a 128 byte (the size of a second-level cache line) memory buffer

into the 4KB of user data, and “read” on the receive side by repeatedly copying portions

of the user data into a 128 byte buffer. The checksum is also computed on packets. Virtual

processor per connection (VPPC) and thread per connection (TPC) data are omitted from

Figure 2.4 since all three schemes yield essentially the same performance in this scenario.

Note that throughput is highest for UDP send-side processing and lowest for TCP receive-

side processing.

Figure 2.5 shows speedup corresponding to the throughput data presented in Figure 2.4.

Here speedup is throughput normalized by the corresponding single processor throughput.

Note that in all four experiments speedup is linear, and in the range of 14 to 17 at 20

processors.
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Figures 2.4 and 2.5 give compelling evidence that connection-level parallel protocol

stacks (even with TCP) can scale with the number of processors. These results are consis-

tent with those reported in [118], which focus on the receive side for thread per connection

parallelism. We extend their results in two significant ways. First, our UDP and send-side

TCP results are new. Second, our receive-side results include the cost of fetching user data

from memory, over the system bus, the first time it is touched.

The data presented in Figures 2.4 and 2.5 were all gathered on a 20-processor 150

MHz SGI Challenge. Unfortunately, we only had short-term access to this machine, so the

throughput data presented here should not be directly compared with data elsewhere in this

thesis, which were gathered on a 12-processor 100 MHz Challenge.

2.5 Throughput Sustainability with Respect to Connections

To measure the impact of adding connections on the overall throughput, we ran exper-

iments varying the number of connections running on a 12-processor machine from 12 to

3072. We also varied the granularity of parallelism from coarse (processor per connection)

to fine (thread per connection). We wanted to determine whether increasing parallelism (by
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multiplexing fewer connections onto more virtual processors) is beneficial, because of in-

creased scheduling flexibility and improved locality of memory reference, or detrimental,

because of the overhead of using more virtual processors. Comparing the throughput of

different implementations with the same number of connections answers this question.

In these experiments, threads are not wired to processors. Thus, the results presented

here are for thread per connection (TPC) or virtual processor per connection (VPPC), even

when the number of virtual processors is the same as the number of physical processors. We

found that in all experiments wiring threads to processors decreased the aggregate through-

put. In some configurations this decrease was as much as 50%. Furthermore, the version

of IRIX we used schedules threads for cache affinity [10], which has been shown to benefit

connection-level parallelism [114, 115].

Figure 2.6 shows the throughput of our multiprocessor sending data on 12 to 3072 TCP

connections, where the checksum is computed. Figure 2.7 shows the corresponding results

for our UDP protocol stack, without checksumming. Where VPPC data are shown, the

number of virtual processors is indicated byV in the legend. We also conducted experi-

ments using between 12 and 384 virtual processors (not shown in these figures) and found

these configurations to yield throughput values which generally lie between those shown.

It is worth noting that the curves for thread per connection stop at 384 connections since

IRIX only allows a maximum of 512 threads in a process group to share an address space.

We were unable to use every thread for sending (or receiving) data, and therefore limited

the number of protocol processing threads to 384.

Several conclusions can be drawn from the data in Figures 2.6 and 2.7. The through-

put for both TCP and UDP is sustained surprisingly well as the number of connections

increases. For example, using 384 virtual processors, the overall throughput for TCP send-

side processing only degrades from 960 Mbps to 800 Mbps as the number of connections

increases from 384 to 3072. Furthermore, with more than 12 connections using the maxi-

mum number of virtual processors (i.e., using TPC or VPPC with 384 virtual processors)
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yields the best throughput. Using more virtual processors also has the advantage that it

pushes out the point at which throughput starts to degrade. Specifically, for 12 virtual pro-

cessors, the throughput starts to degrade immediately (going from 12 to 24 connections),

while for TPC, the throughput does not degrade until there are 96 active connections. This

is encouraging since under conditions where connection sources do not have an infinite

amount of data to send (i.e., are occasionally idle), the scheduling flexibility gained by in-

creasing the number of virtual processors widens the performance improvement over that

achieved by using fewer virtual processors [115, 137].

Figures 2.6 and 2.7 also show a surprising result: the throughput of TCP is less sensitive

to an increase in the number of connections than that of UDP. We suspect that this is because

the code path for sending packets over UDP connections is shorter than the code path for

TCP connections, making the UDP results more sensitive to conflicts in the caches on the

multiprocessor. This phenomenon has been observed by others on a uniprocessor [92].

So far we have presented results only for experiments where the multiprocessor is the

sender. However, for applications such as high-performance file service (which typically

run on top of UDP), it is also interesting to examine the case where the multiprocessor is
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the receiver. When clients write to files on the server, it is likely that consecutive packets

arrive quickly enough that their processing can be amortized over a single virtual processor

yield. If each receiving thread yields the virtual processor after processing two packets, the

unit transfered is 8KB, a typical disk block size for networked file systems. We refer to

processing multiple packets between a single virtual processor yield as processing packets

in “bursts”. Thus, a single packet is processed if the burst size is one, and a pair of packets

are processed if the burst size is two, etc. Amortizing what are normally per-packet costs

over multiple packets is a well known technique for improving networking performance.

Figure 2.8 shows processor per connection (PPC) throughput for a UDP receiver, where

the burst size used by each connection is either one or two, and the checksum is not com-

puted. Recall that the mechanism to ensure that application data is fetched from memory as

it is first touched adds sufficient overhead that comparison with a greater number of virtual

processors is difficult. However, for up to 96 virtual processors the results are all compara-

ble to those shown for PPC. Comparing the dotted line in Figure 2.8 with the dashed virtual

processor per connection curve in Figure 2.7 (forV = 12) indicates that the UDP receive

side throughput degrades more gracefully than the send side, again suggesting that the re-

sults in Figure 2.7 are in part due to the impact of cache behavior on UDP’s send-side code

path. Figure 2.8 also shows that throughput improves up to 20% by processing received

packets in pairs.

We also investigated the benefits of amortizing multiple packet transfers over a single

virtual processor yield (i.e., processing packets in bursts) on the send side. This strategy is

applicable in any situation where the size of data objects being transfered is large relative to

the MTU for the network (e.g., image files). However, this strategy may not be applicable

if the latency of sending data objects is crucial (e.g., packet voice or video). Since some

simple experiments showed that this technique yields diminishing returns, we fixed the

burst size at 16 packets (64KB) for our send-side experiments.
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Figure 2.9 compares throughput for the maximum number of virtual processors (i.e.,

TPC or VPPC with 384 virtual processors) using a burst size of 16 with our previous results

for a burst size of one (see Figures 2.6 and 2.7). Note that the throughput improves by

10-20% for TCP and up to 40% for UDP. For a burst size of 16, the gap between the

throughput curves for 12 and 384 virtual processors in Figure 2.6 is narrowed. In fact, it

becomes insignificant at 384 or more connections for TCP. This suggests that using bursts

when there are a large number of active connections decreases the performance impact of

the number of virtual processors in the system.

2.6 Survey of Related Work

Previous work on connection-level parallelism can be found in [49, 110, 116, 114, 115,

118]. The first performance study is given in [116], in which the authors measure the per-

formance of 5 connections sending data over a TCP/IP protocol stack. Their results show

that for multiple connections, using an asynchronous interface between protocol layers (to

potentially achieve speedup within a single connection) yields inferior performance to ex-

ecuting the entire protocol stack as a single critical section. Thus, this work is the first to

advocate thread per connection (as described in Section 2.2).

The most complete experimental study to date is [118], which examines a connection-

level parallel protocol stack running on a 20-processor Sun SPARCCenter 2000 [24]. The

authors show that using thread per connection, throughput scales well for 20 TCP connec-

tions, all receiving data. Their results show that speedup is linear up to 12 processors when

presentation layer processing (e.g., XML or XDR) is included, and is 10 at 20 processors.

Without presentation layer processing, speedup is linear up to 20 processors, where it is

about 15. The authors conjecture that the speedup with XDR is clipped at 12 processors

because the system bus becomes the bottleneck at this point.

The most complete simulation study to date is [114, 115], which examines the perfor-

mance of packet-level parallelism and connection-level parallelism for UDP connections.
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The arrival process for each connection is given by a packet train model. In this work,

Salehi et al. demonstrate that processor per connection yields higher aggregate throughput

than packet-level parallelism whereas packet-level parallelism provides lower latency. Fur-

thermore, they show that packet processing time for thread per connection is lower than for

processor per connection.

During and since the publication of our work there are a number of other researchers

that have worked on parallelized protocols as a way of scaling the networking capacity of

a server. These efforts include work on multi-gigabit applications [47, 90], parallelism at

the network layer [28], and off-board processing [73]. Perhaps more similar to the work

in this thesis are other techniques for implementing connection-level parallelism [57, 60],

and aggregation of connections into even coarser units of parallelism [3].

Because of both scalability and cost benefits, many researchers have investigated the

use of connection-level parallelism in cluster architectures [2, 4, 5, 8, 11, 22, 29, 30, 34,

39, 62, 61, 104, 103, 140]. Clusters are more scalable than a shared-memory multiprocessor

because the memory, backplane and disk bandwidth all scale with the number of nodes. For

large configurations, clusters are also typically much less expensive than SMP’s with the

same processing power. Clustering technology for web-based applications has also evolved

in synergy with important enabling technologies such as Layer-4 and Layer-7 switches [16].

This evolution has led to many commercial products and solutions, including those offered

by both IBM [85] and Microsoft.

2.7 Conclusions

In this Chapter we described our implementation of connection-level parallelism (CLP),

and experimentally determined how throughput scales with the number of processors (from

1 to 20), and how throughput changes as the number of connections increases (from 12 to

3072).

We also investigated three other issues:
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• The effect of the granularity of parallelism on performance.

• The effect of the transport protocol on performance.

• The impact of processing packets in bursts.

We found that connection-level parallel protocol stacks scale well with the number of

processors for UDP and TCP, performing both send-side and receive-side communication.

Furthermore, the throughput delivered is, for the most part, sustained as the number of

connections increases. We also showed that for moderate to large numbers of connections,

the number of threads in the system and the number of connections assigned to each thread

are the key factors in determining performance on a multiprocessor.

Our results showed that thread per connection parallelism yields the best aggregate

throughput. However, thread per connection may not be feasible if the number of con-

nections exceeds the number of threads that can be reasonably supported by a particular

multiprocessor. In this case, the best throughput is obtained by using virtual processor per

connection and maximizing the number of threads in the system.

We also showed that if an application needs maximal throughput from a multiprocessor

protocol stack, amortizing per-packet costs over multiple packets is worthwhile.

41



CHAPTER 3

FAIRNESS BEHAVIOR OF CONNECTION-LEVEL
PARALLELISM

3.1 Introduction

In the results we have discussed in Chapter 2, the throughput measure of interest has

been the overall,aggregatethroughput of all of the connections. Another important mea-

sure of performance, however, is the throughput seen byindividual connections. Recall that

our experiments use a single thread for each virtual processor to send or receive packets.

Furthermore, processing of packets for connections assigned to the same virtual processor

is performed in a round-robin manner. Thus, any difference in throughput for connec-

tions assigned to the same virtual processor is at most one packet’s worth of data over the

sampling interval (e.g., 45 seconds for our implementation). However, we present both

per-connection and per-thread throughput results for the sake of completeness. In describ-

ing these results, we will use the term “thread” to mean the thread performing protocol

processing on a virtual processor.

Clearly, the extent to which a thread receives its fair share of the total throughput is

influenced by the manner in which threads are scheduled by IRIX. WithN threads, one

might be tempted to assume that each thread receives approximately 1/N (i.e., roughly its

“fair share”) of this aggregate throughput, particularly when the per-thread throughput is

measured over a sufficiently long period of time. As we will see, however, our results show

there can be significant differences in the per-thread (as well as per-connection) throughput.

We quantify the degree to which our protocol implementations distribute aggregate

throughput fairly by measuring the throughput seen by each connection (and thread) and
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computing percentiles of the throughputs, between the maximum and minimum values.

We report here on results from four configurations. In the next section we consider UDP

send-side processing without checksumming, with both a moderate and large number of

connections. In Section 3.3, we consider TCP send-side processing with checksumming,

again varying the number of connections.

3.2 UDP Fairness

Figure 3.1 shows the difference in throughput that 384 connections see when they are

serviced by different numbers of threads. The curves plot percentiles of per-connection

throughput as a function of the number of threads. Figure 3.2 shows the corresponding per-

thread throughput. The throughputs in Figure 3.2 are normalized by the average throughput

seen by all threads. The dotted line in Figure 3.2, for example, shows the normalized

throughput such that 75% of the threads receive a throughput of less than or equal to the

y-axis value. The spread between the curves is thus a rough indication of the distribution

of per-thread throughput seen by the number of threads indicated by the x-axis.

Note that in both Figures 3.1 and 3.2 there is significant range in the distribution of per-

connection (and per-thread) throughputs for different numbers of threads. This is true for

both small (12-24) and large (up to 384) numbers of threads. Furthermore, since connec-

tions assigned to threads are serviced round-robin, the curves in Figures 3.1 and 3.2 match

in terms shape and slope. Given the similar nature of Figures 3.1 and 3.2, we turn our at-

tention to Figure 3.2 since we are also able to obtain scheduling and latency measurements

on a per-thread basis, but not a per-connection basis.

Figure 3.2 illustrates several interesting aspects of the server’s behavior. First, we note

that there can be a significant difference in the throughput seen by individual threads. For

example, with 96 threads, the thread receiving the highest throughput receives approxi-

mately 10 times the throughput received by the thread with the lowest throughput. We

found this quite surprising since with 96 threads, 1500 scheduling time quanta (in a 45-
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second interval), and 12 processors, each thread should have received approximately 190

time quanta – long enough to have averaged out the performance differences one might

expect in the throughputs during the individual 30 ms time quanta.

Figure 3.2 also illustrates that the differences in throughput per thread are minimized

when there are only 12 threads. Thus, from a fairness standpoint, a smaller number of

threads is to be preferred. Recall from our discussion of Figure 2.7, however, that a smaller

number of threads results in lower throughput. For example, with 384 connections, the

aggregate throughput (as indicated in Figure 2.7) is 2.0 Gbps and 3.1 Gbps for 12 and

384 threads, respectively. Thus, while 12 threads provide a fairer allocation of throughput

among threads, the aggregate throughput is lower.

We were surprised by the magnitude of the unfairness shown in Figure 3.2, and wanted

to understand its cause. As we will see, the user time given to threads, and the latency pro-

cessing packets, both appear to play a role in the unfair distribution of aggregate throughput

to individual threads.

Figure 3.3 shows the user time given to the threads corresponding to the quartiles in

Figure 3.2 (labeled A through D, and F). The user time shown is normalized by the average

user time given to all threads. We stress that Figure 3.3 isnota quartile plot. Hence, curves

in this Figure can cross, as seen for threads B and D at 192 threads. The similarity in

shape and slope of the curves in Figures 3.2 and 3.3, at least up to 96 threads, suggests

that the scheduler has some determining effect on fairness in this region. However, this is

no longer the case with more than 96 threads, since the user time for threads B, C, D, and

F are all similar in this region, yet deliver dramatically different throughput (as shown in

Figure 3.2).

Figure 3.4 shows the average per-packet latency seen by the threads in Figure 3.2 (la-

beled A through F). Again, note that Figure 3.4 is not a percentile plot. The most noticeable

feature of Figure 3.4 is the dramatic difference in latency between threads, when there are

a moderate or large number of them. For example, thread E (which corresponds to the
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4th percentile in throughput) and F (which corresponds to the minimum throughput), show

differences of a factor of 2.3 to 6.3, at 96 threads and above. This suggests that the distribu-

tion of per-packet latency seen by the threads has a heavy tail in this region. One possible

explanation for this is the memory reference behavior during protocol processing. These

differences in latency have a dramatic affect on the per-thread throughput, especially when

there are more than 96 threads.

We were also interested in examining the fairness behavior of our protocol stack as the

number of connections increased from a moderate to large size. To compare our results

with those described above, we used the same protocol stack (i.e., UDP send-side, without

checksumming), the same range of threads (i.e., 12 to 384), and again measured values

over a 45-second interval. Figures 3.6 through 3.8 show the fairness behavior of our server

sending data over 3072 UDP connections. We discuss these figures in order, as before.
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Figure 3.5. UDP Send-Side Throughput
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Figure 3.6. UDP Send-Side Throughput
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Figures 3.5 and 3.6 show percentiles of normalized per-connection and per-thread through-

puts as a function of the number of threads for 3072 UDP connections. In Figure 3.6, note

that the differences in per-thread throughput in this Figure are still significant (i.e., are up

to a factor of 5), but are less than those in Figure 3.2, which exceed a factor of 10. In

common with our results for fewer connections, Figure 3.6 also illustrates that the differ-

46



N
or

m
al

iz
ed

 u
se

r 
tim

e 
pe

r 
vi

rt
ua

l p
ro

ce
ss

or

Virtual Processors
10 100 1000

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
D
C
B
A

Figure 3.7.UDP Send-Side CPU Time for
3072 Connections.

L
at

en
cy

 p
er

 v
ir

tu
al

 p
ro

ce
ss

or
 (

m
ic

ro
se

co
nd

s)

Virtual Processors
10 100 1000

0

200

400

600

800

1000

A
B
C
D
E
F

Figure 3.8. UDP Send-Side Latency for
3072 Connections.

ences in per-thread throughput are minimized when there are only 12 threads. However,

this improvement in fairness behavior again comes at the cost of aggregate throughput. For

example, when using 384 threads (at the extreme right of Figure 3.6) the aggregate through-

put from Figure 2.7 is 2.1 Gbps. However, for 12 threads (at the far left of Figure 3.6) the

aggregate throughput is 1.7 Gbps.

Figures 3.7 and 3.8 again show the effect of user time given to threads, and average

per-packet latency, on the per-thread throughput. Figure 3.7 shows the normalized user

time given to the threads corresponding to the quartiles in Figure 3.6 (labeled A through

D, and F). The similarity in shape and slope of the curves in Figures 3.6 and 3.7, at least

up to 96 threads, again suggests that the scheduler has some determining effect on fair-

ness in this region. However, for more than 96 threads, the scheduling behavior again

has less impact on fairness. Figure 3.8 shows the average per-packet latency seen by the

threads in Figure 3.6 (labeled A through F). The most interesting feature of Figure 3.8 is

the drop in average per-packet latency for the thread which delivers the lowest throughput

(F), when compared with the corresponding curve in Figure 3.4. For example, with 384

connections and the same number of threads, the average per-packet latency for thread F

is roughly 2000 microseconds (see Figure 3.4). For 3072 connections and 384 threads, the
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per-packet latency for thread F is only 625 microseconds. In fact, over the range of threads

we examined, the gap between the latencies of the thread delivering the 25th percentile

throughput (D) and minimum throughput (F), is narrowed considerably as the number of

connections is increased. Thus, while increasing the number of connections assigned to

the same number of threads reduces aggregate throughput, it can improve the worst-case

latency behavior. Although we can not specifically say why this is the case, it is easy to see

how an increase in the number of connections could narrow the range of the distribution

of the per-thread (and per-connection) throughputs. Consider per-thread throughputs when

there are 384 threads (the point at which aggregate throughput is greatest). In Figure 3.2

there is only one connection per thread in this configuration. Thus, any effects memory

reference behavior seen by a thread effect its connection throughput. On the other hand, in

Figure 3.6 there are 8 connections per thread when there are 384 threads, and these con-

nections are serviced round-robin one packet at a time. This means that any impact on

throughput due to favorable (or unfavorable) effects of memory references are distributed

across eight connections. This amortization of differences in per-connection throughput

across multiple connections would tend to narrow the range of the throughputs, as seen in

going from 384 to 3072 connections.

In addition to understanding the effect of increasing the number of connections at our

server, we also wanted to understand the effect on fairness behavior of using TCP as the

transport layer protocol instead of UDP. The next sections examines this issue.

3.3 TCP Fairness

Considering the fairness behavior of TCP in addition to UDP is important since much

of the continuous media delivery over the World-Wide Web today still uses TCP. Although

providing throughput guarantees for a protocol that retransmits data may not make sense,

improving fairness to reduce the variance in throughput delivered to a connection does.

Reducing variance in throughput provides the benefit of smoothing traffic as it is delivered
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to the network, and reducing the buffer space required at the client as the media is displayed

to the user.

This section investigates the fairness behavior of TCP, and compares it to the fairness

behavior of UDP presented in the previous section. Before we begin to look at TCP, it

is important to point out the important differences between UDP and TCP. First, TCP is

a more complex protocol than UDP - it provides reliable delivery of data without loss,

duplication, reordering, or corruption. Even though our experiments don’t include dealing

with such errors, the TCP code that is required to detect and recover from errors is still

executed for every TCP packet sent or received. Part of the error detection that is performed

for every packet is the checksum computation.

Figure 3.9 shows the per-connection throughput for 384 TCP connections all sending

data on our 12 processor server. For each packet sent, the TCP checksum is computed. The

curves plot per-connection throughput as a function of the number of threads. The dotted

line in Figure 3.9, for example, shows the throughput such that 75% of the connections

receive a throughput of less than or equal to the y-axis value. The spread between the

curves is thus a rough indication of the distribution of per-connection throughput seen by

the number of threads.

Figure 3.10 shows the per-thread throughput for the same TCP connections as in Fig-

ure 3.9. Note that Figures 3.9 and 3.10 exhibit the same general features, just like the

corresponding per-connection and per-thread throughput curves for UDP (see Figures 3.1

and 3.2). The differences in per-connection and per-thread throughput are also smallest for

TCP when there are only 12 threads. In addition, there is still a significant difference in

the throughput seen by individual threads for TCP (see Figure 3.10), although not as great

as seen for UDP (see Figure 3.2). For example, with 96 threads the thread receiving the

highest throughput receives approximately 3 times the throughput received by the thread

with the lowest throughput. Recall that for UDP this ratio was higher, namely a factor of

10.
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Figure 3.9. TCP Send-Side Throughput
per Connection for 384 Connections.
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Figure 3.11. TCP Send-Side CPU Time
for 384 Connections.
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Figure 3.10 shows that when considering fairness, in terms of how throughput is dis-

tributed among TCP connections, having a single thread per processor is best. Unfortu-

nately this is in number of threads for which aggregate throughput is lowest. For example,

with 384 connections, the aggregate throughput (as indicated in Figure 2.6) is 950 Mbps

and 850 Mbps for 12 and 384 threads, respectively. Thus, while 12 threads provide a fairer

allocation of throughput among both connections and threads, the aggregate throughput is

lower.

One interesting difference between the per-thread throughput results for TCP and UDP

is difference in the way the worst-case per-thread throughput degrades. As shown in Fig-

ure 3.2, for UDP the worst case throughput drops off rapidly, but levels off at 96 threads

and above, In Figure 3.10, we see that for TCP the worst case throughput starts of much

higher (relative to the 25th percentile, and the other percentiles) but falls off steadily all the

way from 12 to 384 threads. In fact, for TCP the largest difference between the maximum

and minimum per-thread throughputs occurs when there are 384 threads each servicing one

connection. At this point the ratio of the maximum to minimum per-thread throughput is

5. Although we can not definitively says why this is the case, it is worth pointing out that

our TCP experiments have an additional risk in their memory reference behavior that is not

present in our UDP experiments. Because TCP computes a checksum for every packet,

there is an entire page that is referenced an additional time after it is loaded. This means

that if the both the data source buffer and communication buffer experience unfavorable

memory reference behavior, TCP will see these effects compound three times: once as the

data source buffer is read, once as the communication buffer is written (i.e., loaded from the

source buffer), and again as the communication buffer is checksummed. For UDP, only the

first two page references are made (to load the communication buffer), and the checksum

computation is not performed.

Figure 3.11 shows the user time given to threads corresponding to the quartiles in Fig-

ure 3.10 (labeled A through D, and F). The user time shown is normalized by the average
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user time given to all threads. Figure 3.11 is not a quartile plot, which means that curves

in this Figure could cross (but obviously don’t). The similarity in shape and slope of the

curves in Figures 3.10 and 3.11, at least up to 96 threads, suggests that the scheduler has

some determining effect on fairness in this region. However, this is not the case with more

than 96 threads. The user time for threads C, D and F are all similar in this region, yet

deliver quite different throughputs (as shown in Figure 3.10).

It is interesting to compare the user time given to threads servicing TCP connections

(see Figure 3.11) to the user time given to threads servicing UDP connections (see Fig-

ure 3.3). These graphs are similar in that they exhibit roughly the same worst-case behavior

(at 96 threads), and best-case behavior (at 12 and 384 threads). We were somewhat sur-

prised by these results since our protocol stack with TCP requires an additional thread per

physical processor when compared with our UDP stack. Furthermore, 12 of these threads

(one per physical processor) are scheduled every 100-200 milliseconds. These threads man-

age the timers associated with TCP’s error control. We expected the scheduling of these

timer threads to interfere with the scheduling of the threads sending data, and thus make

the range of user times assigned to threads much worse for TCP.

Figure 3.12 shows the average per-packet latency seen by the threads in Figure 3.10

(labeled A through F). As for UDP, the most dramatic feature of Figure 3.12 is the large dif-

ference in latency between threads when there are a moderate or large number of them. For

example, threads E (which corresponds to the 4th percentile in throughput) and F (which

corresponds to the minimum throughput) show differences of a factor of 2 to 6 at 96 threads

and above.

As with the CPU time associated with each thread, the per-packet latency results for

TCP in Figure 3.12 are very similar to the results for UDP (see Figure 3.4). Figure 3.12

shows the same heavy tail in the region where there are 96 or more threads servicing 384

connections. Again, this is most likely due to memory reference behavior during protocol

processing. It is interesting to note that the variance of the throughput received by threads
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E and F is lower for TCP than UDP, as indicated by the narrower confidence intervals.

This is most likely due to the fact that computing the checksum in our TCP protocol stack

reduces variability in memory reference behavior. This is consistent with previous results

which study the cache behavior of network protocols on a uniprocessor. The differences in

latency when there are moderate or large numbers of threads have a significant effect on

per-thread throughput, as shown in Figure 3.10.

To complete our fairness results, we examined the fairness behavior of TCP sending

data over 3072 connections. We used the same parameters for our experiments as was used

to obtain the TCP results for 384 connections. Figures 3.13 through 3.16 present these

results. As before, the number of threads servicing the connections is varied from 12 to

384 in each figure. Figures 3.13 and 3.14 show per-connection and per-thread throughputs,

respectively. Figure 3.15 presents the relative CPU time given to the threads in Figure 3.14,

and Figure 3.16 shows the average per-packet latency for the same threads. We describe the

results in these graphs by comparing their significant features with both their UDP (3072

connection) and TCP (384 connection) counterparts.
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The per-thread throughput for 3072 TCP connections (see Figure 3.14) behaves as ex-

pected. In changing protocols to TCP (from UDP), fairness improves in general. This was
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3072 Connections.

also the case for 384 connections (see Figures 3.10 and 3.2). In increasing the number of

connections to 3072 (from 384), fairness also improves. This was also the case for UDP

(see Figures 3.6 and 3.2). There is one important exception to this expected behavior. The

thread that sees the lowest normalized throughput in Figure 3.14 (thread F) has its mini-

mum at 96 threads, and then increases for 192 threads, and subsequently decreases again.

Note also that the per-connection curves in Figure 3.13 have the same characteristic shape

as the per-thread curves in Figure 3.14. This was also true in our other three experimental

configurations.

The results showing how CPU time is allocated to threads (see Figure 3.15) conforms to

what one would predict, given the results from the other experimental configurations. The

range of relative CPU time allocations is greater for 3072 TCP connections than for 3072

UDP connections (see Figure 3.8). Furthermore, the general form of the curves for both

TCP CPU time allocations (for 384 connections in Figure 3.11, and 3072 connections) is

the same.

Our results for average per-packet latency for 3072 TCP connections (see Figure 3.16)

also conforms to what one would predict, given the results from the other experimental

configurations. The thread that delivers the worse throughput to its connection(s) also sees
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the greatest per-packet latency, and the magnitude of the tail of this latency (at 192 and 384

threads) drops by a factor of three as connections are added. We suspect that this is due to

the fact that any unfavorable memory reference behavior experienced by a small number of

connections is amortized over more connections (when there are 3072 of them, instead of

384 as in Figure 3.12). Furthermore, comparing Figures 3.16 and 3.8, the results for 3072

TCP and UDP connections are quite similar. As before, the most significant difference is

the reduction in variance in the TCP results, presumably due the checksum computation

introduced for our TCP experiments. It is also surprising that the nominal values of the

TCP and UDP per-packet latencies are so similar when a large number of threads are used

to serve the same number of connections. Specifically, the largest per-packet latency is

about 2 milliseconds in both Figures 3.12 and 3.4, and 700 microseconds in Figures 3.16

and 3.8. These results again suggest that memory reference behavior plays an important

role in determining per-thread throughput when there are a large number of threads sending

data through the protocol stack.

Most of the recent work on fairness properties of network communication has evolved

from earlier work on cluster architectures. The common theme within this research area is

developing effective techniques for supporting performance isolation, even in the presence

of over-subscribed resources. Some notable recent projects are those at Rice [5], Hewlett-

Packard [31], and the University of Massachusetts [25, 26, 27].

3.4 Conclusions

In this Chapter we studied how aggregate throughput is distributed across connections

in our implementation of connection-level parallelism (CLP). We find that in many cases

throughput isnot distributed fairly among connections, or threads.

We quantified whether our protocol implementations were distributing aggregate through-

put fairly by measuring the throughput seen by each connection and thread and computing

percentiles of the throughputs, between the maximum and minimum values. We presented
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results for both UDP and TCP, servicing both a moderate and large number of connections.

Our results show that matching the number of threads to the number of physical processors,

while scheduling connections assigned to each thread (or virtual processor) in a round-robin

manner, yields the best fairness behavior. However, an improvement in fairness may come

at the cost of aggregate throughput.

We also found that there can be significant differences in the per-connection (as well as

per-thread) throughput. We demonstrated that scheduling and memory reference behavior

both play a role in the unfair distribution of aggregate throughput. Furthermore, fairness

problems tend to increase as more threads are used in the protocol stack, and this increase

is due to greater differences in memory reference behavior seen by the threads.
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CHAPTER 4

SUPPORT FOR CONTINUOUS MEDIA

4.1 Introduction

One obvious trend in the Internet is that text and image data (e.g., as seen today on

the World-Wide Web) will become increasingly enriched with continuous media, such as

voice, video and sensor data. This trend will be driven by the desire to use the Internet for

commerce, education, entertainment, monitoring and control, where multimedia presen-

tation has tangible benefits. In such applications, large scale servers will need to support

high bandwidth communication, some of which will be real-time (e.g., for voice and video).

Furthermore, since some of these applications will be highly interactive (e.g., shopping on-

line, browsing audio/video libraries, and virtual reality), the opportunity to buffer data at

the client may be limited to a few milliseconds worth of data. Thus, servers will need to

“play out” real-time data, at a rate which closely matches the rate at which it was originally

recorded. Providing some form of quality-of-service guarantee to a set of connections, each

of which begins at the disk subsystem on the server and ends at an output device on a client,

is therefore a crucial requirement for the operating system, and communication subsystem

therein.

We consider two classes of quality-of-service continuous media here. The first is for

applications where the playout rate is required to exactly match an original fixed record-

ing rate (we refer to these as constant bit rate, or CBR, applications). In this case, the

protocol stack and operating system (as well as other system components) should provide

service where throughput delivered to connections is constant and guaranteed. We refer

to this service class as service with hard throughput guarantees. Other applications are
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more forgiving. These applications (sometimes referred to as “rate adaptive”) can adjust

their playout rate as they detect that the available bandwidth being delivered to connections

changes. In this case the protocol stack and operating system need to distribute the avail-

able bandwidth equitably among all connections. We refer to this service class as service

with soft throughput guarantees.

Experimentally demonstrating how a connection-level parallel protocol stack can pro-

vide throughput guarantees (both soft and hard) to a number of real-time connections is

the subject of this Chapter. In the previous Chapter, we showed that a collection of threads

sending data on a moderate or large number of connections exhibit unfair behavior. In

other words, some connections obtain substantially greater throughput than others, when

their throughput is measured over reasonably long periods of time (e.g., 45 seconds). Fur-

thermore, we demonstrated that scheduling behavior and memory reference behavior both

seem to play a role in this unfairness.

Clearly the unfairness we have observed is an obstacle to delivering throughput guar-

antees (either hard or soft) to connections. The remainder of this Chapter describes and

presents results for a technique, calledthroughput-based scheduling, that provides a mech-

anism whereby threads monitor and report their per-connection throughput to the scheduler.

To support soft throughput guarantees, the scheduler balances load by reallocating work (in

this case connections) among threads. We refer to this technique assoft throughput-based

scheduling. This is quite different from traditional scheduling mechanisms, which might

allocate more CPU time to the threads with more work to do (i.e., more connections to ser-

vice). To support hard throughput guarantees, the scheduler schedules threads according to

their “utilization” (i.e., how much of their current capacity is consumed by the throughput

they have been assigned to deliver). We refer to this technique ashard throughput-based

scheduling. Such monitoring of thread utilization has the additional potential of allowing

servers providing hard throughput guarantees to reject requests for service when all threads

are highly utilized.
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We introduce the notion of ascheduling signaturein this Chapter which shows how

CPU time is distributed among threads. In examining baseline results (i.e., results from ex-

periments with no throughput-based scheduling), the scheduling signature for a particular

experiment is an illustrative way of visualizing what impact the scheduler has onper-thread

throughputs. Thus we can draw conclusions about the relative contribution of the scheduler

versus memory references to the unfairness in throughput delivered by different threads.

For experiments using either hard or soft throughput-based scheduling, the signature has

the additional advantage of showing any perturbation that the throughput-based scheduling

mechanisms have on the CPU time allocated to threads performing protocol processing.

The results presented in this Chapter evaluate how well throughput-based scheduling

performs in providing throughput guarantees to all active connections on a shared-memory

multiprocessor server. In this evaluation, we assume that each connection’s quality of ser-

vice requirements are the same. However, we note the techniques that we study can be

generalized to support different service requirements for different connections.

4.2 Service with Soft Throughput Guarantees

A necessary step in providing soft throughput guarantees is eliminating any unfairness

in the throughput delivered to connections sending continuous media data which have the

same quality of service requirements. Clearly, the extent to which a connection receives its

fair share of the total throughput is influenced by the manner in which connection protocol

processing is scheduled. For the results in the previous Chapters, the processing of packets

for connections assigned to the same virtual processor is performed in a round-robin man-

ner. However, the scheduling of the threads running on virtual processors is controlled by

the IRIX operating system, which uses a traditional UNIX time-share scheduler by default,

with a 30 ms time quantum.

We have shown that the scheduler and memory reference behavior are obstacles to de-

livering soft throughput guarantees to connections. If memory reference behavior was the
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same for all connections, then allocating CPU time to threads in proportion the the number

of connections they are servicing would be sufficient to provide soft throughput guarantees.

Techniques for scheduling a resource (such as CPU time) to support proportional resource

sharing are well understood. However, the differences in throughput due to differences in

memory reference behavior, will still persist even if threads are given proportional CPU

allocation.

In the remainder of this Chapter, we investigate techniques for eliminating differences

in per-connection throughput. In this section we focus the goal of doing this with the goal

of providingsoft throughput guarantees to connections. In the next section our goal is to

providehard throughput guarantees to connections.

Our implementation of throughput-based scheduling, which provides both soft and hard

guarantees, uses a common component which allows the scheduler to monitor the per-

connection throughput for each thread, and make scheduling decisions accordingly. In

designing and experimenting with different implementations, we found it was important to

capture the most recent “service” that a thread receives (from the IRIX scheduler and the

memory system), as well as capture the long-term “average” service. Therefore, in our im-

plementation of throughput-based scheduling, thread throughputs are monitored every 100

milliseconds, and used to update exponential moving averages. Our scheduler then uses

the throughputs measured by the threads to make the appropriate resource management

decisions, depending on whether soft or hard throughput guarantees are being provided.

4.2.1 Soft Throughput-Based Scheduling

To provide soft throughput guarantees, throughput-based scheduling migrates connec-

tions between threads in an attempt to equalize average per-connection throughput. Fig-

ure 4.1 shows an example of how this works using the throughput monitoring mechanism

described earlier. In Figure 4.1, a single connection is migrated from virtual processor

i to virtual processorj because the maximum per-connection throughput was measured
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on i, and the minimum per-connection throughput was found onj. So that the through-

put estimates are reasonable, load balancing between virtual processors (i.e., connection

migration) is performed every 200 milliseconds, half as often as throughput sampling.

Figure 4.1. Example of Soft Throughput-Based Scheduling.

The throughput monitor shown in Figure 4.1 runs every 100 milliseconds and updates

an exponential moving average of each thread’s throughput. Recall that this averaging

method captures both short-term and long-term aspects of the service that a particular

thread receives from the operating system and the memory system. The short-term ef-

fects include how much time a thread ran in the last 100 ms (if at all) and whether memory

references were favorable or not. The long-term effects include any bias that the IRIX

scheduler has toward allocating more or less than a thread’s fair share of the overall CPU

time over intervals measured in seconds. We saw evidence for such bias in the previous

Chapter that is supported by the scheduling signatures we’ll see in this Chapter.
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There are two other design decisions that we made in our implementation of soft

throughput-based scheduling. The first was the gain for the exponential moving average

(α). The second was the policy for choosing which connection to migrate (e.g., from

threadi to thread j in Figure 4.1). We experimented with several combinations for both

of these. We variedα by factors of 2 between 1/2 and 1/128, and tried FIFO, LIFO, and

random policies for picking which connection to migrate. We found that using a value of

α = 0.875 to measure throughputs, and FIFO to migrate connections performed best.

As we will see, soft throughput-based scheduling has the desired effect of moving con-

nections from threads experiencing unfavorable memory reference behavior to threads ex-

periencing favorable memory reference behavior. We also find that wiring virtual pro-

cessors to physical processors improves how equitably aggregate throughput is distributed

among connections when using soft throughput-based scheduling.

4.2.2 Results for Soft Throughput Guarantees

We evaluate how effectively throughput-based scheduling performs in terms providing

soft performance guarantees to connections in two configurations. Our performance metric

of interest is the difference between the connection that receives the maximum throughput

and the connection that receives the minimum. In the first configuration we evaluate soft

throughput-based scheduling using the same experimental setup described in the previous

Chapter (where threads are not wired to processors). In the second configuration we wire

threads running on virtual processor to physical processors. This has the effect of sup-

pressing IRIX’s affinity-based scheduling. As we will see, wiring threads to processors

improves how fairly CPU time is distributed among threads as well as how fairly aggregate

throughput is distributed among connections.

Figure 4.2 and Figure 4.3 show the per-connection throughput for UDP send-side ex-

periments with 384 connections where the number of threads servicing the connections

is varied. Figure 4.3 shows throughput where connections are migrated between threads,
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but in Figure 4.2 connections remain bound to threads. Note that soft throughput-based

scheduling (accomplished by periodically migrating connections between threads) is effec-

tive in significantly reducing the gap between the maximum and minimum per-connection

throughput, especially when the number of threads is small (i.e., less than 96). Soft

throughput-based scheduling is less effective with moderate to large numbers of threads

for several reasons. First, given the way the cache affinity scheduling algorithm in IRIX

works, it is more likely that a thread moves from one processor to another between periods

that it runs when there are more threads. Specifically, IRIX degrades a thread’s affinity

for the last processor it ran on in proportion to the amount of time it spends waiting to

run again. Thus, the more threads there are running on the multiprocessor, the less likely

a thread is to return to the processor it ran on the last time it was scheduled. Since mov-

ing from one processor to another makes memory reference behavior less predictable, it

is more difficult for a thread to accurately measure and predict a stable throughput value.

Furthermore, because there are fewer connections per-thread with more threads, the impact

that a single connection which is migrated has on the source and destination thread is much

greater. Again, this makes the algorithm monitoring throughput less likely to accurately

measure and predict throughput. Thus, soft throughput-based scheduling is effective when

the number of threads is either small or moderate (i.e., in the range of 12-48 in these exper-

iments). Furthermore, when the number of threads is the same as the number of processors,

soft throughput-based scheduling is very effective. This is shown by the dramatic reduction

in the range of per-connection throughputs using 12 threads from Figure 4.2 to Figure 4.3.

Specifically, the difference between the maximum and minimum throughputs is 40% in

Figure 4.2, but negligible in Figure 4.3.

Figure 4.4 and Figure 4.5 show theper-threadthroughput for the same UDP send-side

experiments as Figures 4.2 and 4.3. It is interesting that in the region where soft throughput-

based scheduling narrows the gap between the maximum and minimum per-connection

throughput, the range of per-thread throughputs is also reduced. This suggests that in this

63



T
hr

ou
gh

pu
t p

er
 c

on
ne

ct
io

n 
(M

b/
se

c)

Virtual Processors
10 100 1000

0

2

4

6

8

10

12

14

Minimum
25 %
50 %
75 %
100 %

Figure 4.2. UDP Send-Side Throughput
per Connection for 384 Connections.
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Figure 4.3. UDP Send-Side Throughput
per Connection for 384 Connections, Soft
T-based Scheduling.

region (where there are less than 96 threads), throughput-based scheduling is effective at

distributing the negative effect of poor memory reference behavior among the threads. On

the other hand, with 192 threads connection migration actually increases the range of per-

thread throughputs. This is interesting given that soft throughput-based scheduling is in-

effective, but not harmful, with respect to changing per-connection throughput with 192

threads (going from Figure 4.2 to Figure 4.3).
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Figure 4.4. UDP Send-Side Throughput
per Thread for 384 Connections.
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Figure 4.5. UDP Send-Side Throughput
per Thread for 384 Connections, Soft T-
based Scheduling.
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Figure 4.6.UDP Send-Side CPU Time for
384 Connections.
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Figure 4.7.UDP Send-Side CPU Time for
384 Connections, Soft T-based Schedul-
ing.

Figure 4.6 and Figure 4.7 show the scheduling signatures for the experiments with and

without soft throughput-based scheduling. These Figures show the differences in CPU

time that threads see over the duration of our experiments (i.e., 45 seconds). The curves

plot quartiles of CPU time as a function of the number of threads. The CPU times are

normalized by the average CPU time seen by all threads. Note that Figure 4.6 is different

from Figure 3.3 in that Figure 3.3 gives the CPU times for 6 specific threads out of the

number indicated by the x-axis whereas the spread between the curves in Figure 4.6 is

truly an indication of the distribution of per-thread CPU time seen by the threads.

Perhaps the most remarkable result in comparing Figures 4.6 and 4.7 is how little im-

pact throughput-based scheduling has on the scheduling signature. Figures 4.6 and 4.7 are

amazingly similar! In both Figures the best case fairness behavior of the scheduler occurs

when when there is only one thread per processor. Likewise, the worst case behavior of the

scheduler occurs with a moderate number of threads (between 96 and 192). In this region

the threads that receive the most CPU time receive as much as a factor of three more CPU

time than the threads that receive the least CPU time.
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It is also interesting to see how scheduling and memory referencing effects contribute

differently to per-thread throughput. Consider Figures 4.4 and 4.6. Figure 4.4 shows nor-

malized per-thread throughput whereas Figure 4.6 shows normalized per-thread CPU time.

Thus, memory reference behavior is responsible for the difference in the spread between

the curves going from Figure 4.6 to Figure 4.4. The same is also true going from Figure 4.7

to Figure 4.5. However, Figures 4.5. and 4.7 have the complication that the set of con-

nections that each thread services changes as connections are migrated. These results are

consistent with those in Chapter 3 in suggesting that using more threads to service the same

number of connections causes memory reference behavior to have an increasingly negative

effect on how well throughput is distributed among threads (and connections).

Thus far, we have seen that both scheduling and memory reference behavior are obsta-

cles to delivering throughput guarantees to connections in the presence of IRIX’s affinity-

based scheduling. In addition, we have seen that we can deliver soft throughput guarantees

when the number of threads in our connection-level parallel protocol stack is the same

as, or close to, the number of processors. We also wanted to evaluate the performance of

soft throughput-based scheduling in the absence of affinity-based scheduling. We accom-

plished this by wiring threads to processors and reproducing the experiments that generated

the results in Figures 4.2 through 4.7. As we’ll see from the scheduling signatures, this sig-

nificantly reduces the range of CPU times allocated to threads during the experiments.

Figures 4.8 and 4.9 show the per-connection throughput for UDP send-side experiments

with 384 connections, where the number of threads servicing the connections is varied.

As before, Figure 4.9 shows throughput where connections are migrated between threads,

but in Figure 4.8, connections remain bound to threads. Comparing Figures 4.8 and 4.9,

it is clear that throughput-based scheduling is quite effective at delivering soft through-

put guarantees to connections by evenly distributing aggregate throughput across connec-

tions. Again, soft throughput-based scheduling performs best when the number of threads

matches the number of processors. However, Figure 4.9 also shows that it is robust up to 96
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threads. Furthermore, we observe a significant improvement in the per-connection through-

put delivered to the connection that receives the minimum throughput (labeled “Minimum”

in these figures). This suggests that in the region where soft throughput-based scheduling

is effective, most of it’s benefit is due to eliminating the poor memory reference behavior

seen by the connection(s) that receive the smallest allocation of throughput.
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Figure 4.8. UDP Send-Side Through-
put per Connection for 384 Connections,
Threads Wired.
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Figure 4.9. UDP Send-Side Through-
put per Connection for 384 Connections,
Threads Wired, Soft T-based Scheduling.
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Figure 4.10. UDP Send-Side Throughput
per Thread for 384 Connections, Threads
Wired.
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Figure 4.11. UDP Send-Side Throughput
per Thread for 384 Connections, Threads
Wired, Soft T-based Scheduling.
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Figure 4.12. UDP Send-Side CPU Time
for 384 Connections, Threads Wired.
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Figure 4.13. UDP Send-Side CPU Time
for 384 Connections, Threads Wired, Soft
T-based Scheduling.

These results also show that wiring threads to processors improves the effectiveness

of soft throughput-based scheduling. Compare the per-connection throughput distributions

shown in Figures 4.3 and 4.9. We see that in all experiments where connections are actually

migrated (from 12 to 192 threads), the range of the per-connection throughputs is reduced,

and the worst-case throughput is greater.

Figures 4.10 and 4.11 show the per-thread throughput for the same experiments as

Figures 4.8 and 4.9. These figures give more evidence suggesting that most of the benefit

of soft throughput-based scheduling is achieved by counteracting poor memory reference

behavior. Consider the quartiles in Figures 4.10 and 4.11, focusing on the region where

soft throughput-based scheduling is effective (from 12 to 96 threads). Without throughput-

based scheduling, the threads that are in the top 75% in terms of their throughput are fairly

close in value (the gap between the 100% and 25% curves in Figure 4.10 is less than 20%).

In other words, most of the range of per-connection throughput distribution lies in the

lowest quartile (where there is between a 25% and 60% gap). With soft throughput-based

scheduling, the range of per-thread throughputs is narrowed, and the worst-case per-thread
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throughput is significantly greater when there are between 12 to 96 threads. However, this

comes at the expense of widening the range of per-thread throughputs in the top 75%.

Figure 4.12 and Figure 4.13 show the scheduling signatures for the experiments with

and without soft throughput-based scheduling, but with threads wired to processors. These

Figures show a significant reduction in the differences in CPU time that threads see. Fig-

ures 4.12 and 4.13 show at most a 20% difference in amount of CPU time given to different

threads compared with the factor of 3 difference that we saw in Figures 4.6 and 4.7.

In Figures 4.12 and 4.13 we again see that throughput-based scheduling does not per-

turb the scheduling signature in any meaningful way. In both Figures the best case fairness

behavior of the scheduler occurs when when there is only one thread per processor. Like-

wise, the worst case behavior of the scheduler occurs with a large number of threads (192

or 384).

When threads are wired to processors it is also the case that scheduling and memory ref-

erence behavior affect per-thread throughput differently. Consider Figures 4.10 and 4.12.

Figure 4.10 shows normalized per-thread throughput whereas Figure 4.12 shows normal-

ized per-thread CPU time. Thus, memory reference behavior is responsible for the differ-

ence in the spread between the curves going from Figure 4.12 to Figure 4.10. Note that this

difference is especially large when there is a large number of threads. The same is also true

going from Figure 4.13 to Figure 4.11.

We now consider UDP experiments where the number of connections is increased so

that the per-connection application data buffers completely cover the second-level cache

in our experiments. Recall that the purpose of this is to show the effect of a more heavily

loaded server, where the pressure in the memory system is greater because of the larger

number of connections.

Figure 4.14 shows the per-connection throughput for 3072 connections where the num-

ber of threads is varied from 12 to 384. In comparing Figure 4.14 with Figure 4.2, we see

one important difference: The overall spread of the per-connection throughput is narrowed.
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For example, using 384 threads, the ratio of the maximum to minimum per-connection

throughput is 10:1 in Figure 4.2, but 5:1 in Figure 4.14. Although we cannot directly say

why this is the case, it is easy to see how this could be explained by the increase in the

number of connections serviced by each thread. In Figure 4.2, there is only one connection

per thread for the 384 threads. In this case, any effects of memory reference behavior seen

by a thread effect its connections throughput. In Figure 4.14 there are 8 connections per

thread for the 384 threads, and these connections are serviced round-robin one packet at

a time. This means that impact on throughput due to favorable (or unfavorable) effects of

memory references are distributed across eight connections. This amortization of differ-

ences in per-connection throughput across multiple connections would tend to narrow the

spread of the throughputs, as seen in going from 384 to 3072 connections.
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Figure 4.14. UDP Send-Side Throughput
per Connection for 3072 Connections.
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Figure 4.15. UDP Send-Side Through-
put per Connection for 3072 Connections,
Threads Wired.

Figure 4.15 shows the per-connection throughput for 3072 connections where the num-

ber of threads is varied from 12 to 384, and threads are wired to processors. In comparing

these results with those in Figure 4.14, we see that wiring threads to processors further

reduces spread of the distribution of per-connection throughputs. This is consistent with

our earlier results for 384 connections (see Figures 4.2 and 4.8), with one important differ-
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Figure 4.16. UDP Send-Side Throughput per Connec-
tion for 3072 Connections, Threads Wired, Soft T-based
Scheduling.

ence. In Figure 4.8, wiring threads narrows the spread of throughputs in the range of 12

to 96 threads, but actually widens the spread for more threads. In Figure 4.15, the range

of the distribution is narrowed across the board. Again, the most likely explanation for the

differences between Figure 4.8 and Figure 4.15 is the amortization of favorable or unfavor-

able effects of memory references across more connections. Furthermore, the scheduling

signatures for the configurations in Figures 4.14 and 4.15 are almost identical to those in

Figures 4.7 and 4.13. Thus, the number of connections serviced by the threads has no

significant impact on the CPU time given to each thread, as one would expect.

To determine the effectiveness of soft throughput-based scheduling with large num-

bers of connections, we ran experiments for 3072 connections using soft throughput-based

scheduling with threads wired to physical processors. Figure 4.16 shows the results for

these experiments. Recall that Figure 4.9 gave the corresponding results for 384 connec-

tions. In comparing these Figures it is clear that throughput-based scheduling is also effec-

tive at delivering soft throughput guarantees to a large number of connections. As for fewer
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connections, soft throughput-based scheduling is robust in the region from where there is

one thread per processor, up to 96 threads. Furthermore, we again observe a significant

improvement in the per-connection throughput delivered to the connection that receives the

minimum throughput, presumably due to eliminating the poor memory reference behavior

seen by the connection that receives the smallest allocation of throughput.

4.3 Service with Hard Throughput Guarantees

Thus far, we have only looked at per-thread and per-connection throughputs over long

time-scales (i.e., tens of seconds). However, for applications such as playing continuous

media streams over the network, throughput over short time scales is also important. We

wanted to demonstrate that hard throughput guarantees could be made to continuous me-

dia connections (using UDP). Furthermore, we wanted such guarantees to be robust over

both short and long time scales, and insensitive to unfairness caused by memory reference

behavior effects.

Our implementation of hard throughput-based scheduling uses the same mechanism to

monitor per-thread throughput as was used in soft throughput-based scheduling. Recall

that in this implementation thread throughputs are sampled every 100 milliseconds, and are

used to update a per-thread exponential moving average. The throughput-based scheduler

then uses the these averaged throughputs to make scheduling decisions in order to provide

hard throughput guarantees. We use the same 100 ms timer used by the throughput monitor

to sample per-thread throughputs.

4.3.1 Hard Throughput-Based Scheduling

To provide hard throughput guarantees, throughput-based scheduling adjusts the uti-

lization of each thread to ensure that the threads are delivering their required throughput.

Figure 4.17 shows a model of how this works using the throughput monitoring mechanism

described above. In Figure 4.17, the measured rater i is compared with the throughput
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corresponding to the sum of the throughputs specified by the connections assigned to vir-

tual processori. If the measured throughputr i is less than the specified throughput, the idle

periodpi is reduced. On the other hand, if the measured throughput is greater than the spec-

ified throughput, the idle period is increased. Unfortunately, most operating systems do not

support primitives necessary to adjustpi with resolution any finer than 10 milliseconds.

We therefore perform a functionally equivalent computation in our implementation of hard

throughput-based scheduling. Each thread computes how many packets it should send be-

tweenk×10 millisecond intervals (wherek is a non-negative integer), in order to deliver

the correct throughput. The idle periodpi for virtual processori is therefore changed by

minimizing k and then computing the number of packets to send betweenk×10 millisec-

ond pauses. We also successfully used the same gain for the exponential moving average

(α = 0.875) as was used in soft throughput-based scheduling.

Figure 4.17.Model of Hard Throughput-Based Scheduling.
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As we will see, hard throughput-based scheduling has the desired effect of delivering

the correct throughput to all connections. However, unlike soft throughput-based schedul-

ing, wiring threads to processors does not make a difference in the configuration we exam-

ined.

4.3.2 Results for Hard Throughput Guarantees

To determine the throughput performance of our protocols over short time-scales, we in-

strumented a UDP protocol stack to sample per-thread throughputs every 100 milliseconds.

It was necessary to sample per-thread throughputs instead of per-connection throughputs

since the volume of data logged to memory (and then disk) was manageable given the du-

ration of our experiments, the size of memory in our multiprocessor, and the size of disks

available for archiving data. This would not have been the case if we had implemented

per-connection sampling every 100 msec.

Figure 4.18 shows per-thread throughputs for 384 UDP connections serviced by 12

threads. From the per-thread throughputs sampled every 100 msec, we compute the per-

thread throughputs over longer time scales by using cumulative statistics over the appro-

priate number of 100 msec intervals. Thus, the x-axis varies from 100 msec to about 12

seconds. Note that the per-thread throughput distribution over long time scales closely

matches the behavior of our earlier experiments. This can be seen by matching the distri-

bution seen above 10 seconds in Figure 4.18 with the 12 thread results in Figure 4.4.

Figure 4.19 shows per-thread throughputs for 384 connections serviced by 24 threads.

Comparing this Figure with Figure 4.18, it is clear that with more threads than processors,

the distribution of per-thread throughput is wider for shorter time scales. For example,

at 100 msec, the range of per-thread throughputs is 20% greater using 24 threads instead

of 12. As one would expect, using 48 or more threads yields an even greater difference

between the maximum and minimum per-thread throughput.
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Figures 4.20 and 4.21 show 12 and 24 thread results, except that the threads are wired to

processors. Wiring threads to processors seems to make only a slight difference, narrowing

the range of per-thread throughputs over all time scales, except on the scale of seconds with

24 threads.
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Figure 4.18. UDP Send-Side Through-
put per Thread for 384 Connections, 12
Threads.
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Figure 4.19. UDP Send-Side Through-
put per Thread for 384 Connections, 24
Threads.
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Figure 4.20. UDP Send-Side Through-
put per Thread for 384 Connections, 12
Threads, Wired.
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Figure 4.21. UDP Send-Side Through-
put per Thread for 384 Connections, 24
Threads, Wired.

To determine how our algorithm for making hard throughput guarantees to connections

performed, we ran experiments where the desired throughput per-connection was specified
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Figure 4.22. UDP Send-Side Throughput
per Connection for 384 Connections, Hard
T-based Scheduling.
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Figure 4.23. UDP Send-Side CPU Time
Distribution for 384 Connections, Hard T-
based Scheduling.
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at 4 Mbps. This represents a utilization of about 80%. Figure 4.22 shows results for these

experiments using different numbers of threads to again service 384 UDP connections.

Figure 4.22 shows that providing throughput guarantees to connections using the algorithm

described above is effective with a small number of threads (either 12 or 24). However, with

48 threads the throughput guarantees begin to be difficult to sustain in the absence of tighter

control of the scheduler. To understand the difference in memory reference behavior seen

by the threads in these experiments, we plotted the scheduling signature. Figure 4.23 shows

these results. Note that the hard throughput-based scheduler needs to allocate CPU time to

threads that differs by more than 50% in order to achieve the goal of making throughput

guarantees to connections. These results are consistent with those earlier in this Chapter,

and in Chapter 3, where we saw that even though the IRIX scheduler was able to give

roughly equal time to 12 threads running on 12 processors, the throughput delivered by

threads differed by about 50%.

Figures 4.24 and 4.25 show corresponding results for hard throughput-based scheduling

when threads are wired to processors. Again, we see that wiring threads to processors has

no significant impact on the results.

4.4 Survey of Related Work

Many people have studied supporting multimedia applications on both uniprocessor

and multiprocessor hosts. Most of this work has focused on the disk subsystem. Common

to most of this work is the idea that the disk subsystem and communication subsystem will

be decoupled by an intermediate buffer. For a given client connection, discontinuities in

playback will be caused by overflow or underflow in this buffer. Avoiding this behavior

requires matching the per-connection rates in the disk and communication subsystem, thus

motivating the work described in this Chapter.

Proportional-share resource management (where resources are consumed by active tasks

in proportion to their relative allocations) has been studied in both the networking and op-
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erating systems communities. Proportional-share link scheduling has been proposed and

studied by many researchers [36, 54, 106, 107, 105], and is expected to be deployed in

commercial switches in the near future. Proportional-share processor scheduling has been

implemented by Waldspurger and Weihl [133, 134] and appeared the SGI operating system

[10] subsequent to our work. In their first paper [133], Waldspurger and Weihl present

an example where processes playing MPEG video on a client receive proportional-share

access to the processor. However, they observe differences of a few percent in their actual

frame play-out rates.

Throughput-based scheduling requires the scheduler to obtain information about a thread’s

forward progress, which is how much data it has transmitted per unit time. Our implemen-

tation depends on using a call-back mechanism to accomplish this (calls are made by the

scheduler to code that reports the throughput for a specific thread). This requires some form

of cross-domain IPC in a traditional UNIX operating system. However, the cost of cross-

domain IPC is being reduced to a procedure call in research operating systems, which are

making the operating system itself extensible, and therefore customizable. We therefore

consider it reasonable to use a call-back in our implementation without loss of generality.

An important component of throughput-based scheduling, is the idea of adjusting re-

source allocation to even out differences in memory reference behavior. This is a new

idea, however, the notion that memory reference behavior can effect code execution per-

formance is well known. In fact, there are tools for characterizing and changing program

memory reference behavior to improve performance. Such tools were pioneered by re-

search in the early 1990s (e.g., [52, 87]), and were developed for several processors of

that era [33, 125, 132]. In the context of memory reference behavior of network protocols,

Mosberger et al. [93] and Nahum et al. [94] have proposed and evaluated techniques for

reducing packet latency. Also, Salehi et al. [114, 115] have shown the benefit scheduling

network protocol processing for cache affinity,
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Most of the recent work on server support for continuous media has also evolved from

earlier work on cluster architectures [6, 44, 122, 123, 131]. As in our work, these ap-

proaches all explicitly manage resources to support application requirements. The policies

and mechanisms in some of this work are also based on one of the underlying principles of

throughput-based scheduling: on-line monitoring of server performance in order to ensure

performance guarantees [6, 44, 131].

4.5 Conclusions

In this Chapter we assessed the suitability of connection-level parallelism (CLP) for

supporting continuous media applications. In such applications, the server protocol stack

is one link in a chain of subsystems which must provide throughput guarantees to con-

nections. We consider two types of throughput guarantees. The first is for applications

where the playout rate is required to exactly match an original fixed recording rate (i.e.,

CBR applications). In this case, the protocol stack and operating system (as well as other

system components) should provide service where throughput delivered to connections is

constant and guaranteed. We refer to this service class as service with hard throughput

guarantees. The second is for applications that can adjust their playout rate as they detect

that the available bandwidth being delivered to connections changes. In this case the proto-

col stack and operating system need to distribute the available bandwidth equitably among

all connections. We refer to this service class as service with soft throughput guarantees.

We presented results for a new technique, calledthroughput-based scheduling, that

provides a mechanism whereby threads monitor and report their per-connection throughput

to the scheduler. To support soft throughput guarantees, the scheduler balances load by

reallocating work (in this case connections) among threads. We refer to this technique

assoft throughput-based scheduling. To support hard throughput guarantees, the scheduler

schedules threads according to their “utilization” (i.e., how much of their current capacity is

79



consumed by the throughput they have been assigned to deliver). We refer to this technique

ashard throughput-based scheduling.

Using UDP as the transport protocol, we showed that throughput-based scheduling is

suitable for supporting continuous media applications. Soft throughput-based scheduling

performed best with fewer threads in the system and without competing scheduling mech-

anisms (i.e., IRIX’s cache affinity-based scheduling). Hard throughput-based scheduling

also performed best with fewer threads performing protocol processing. Furthermore, when

the number of threads used is the same as the number of processors, the throughputs deliv-

ered are accurate over both short (i.e., down to 100 milliseconds) and long time scales.
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CHAPTER 5

COST AND QUALITY PERFORMANCE IN SENSOR NETWORKS

5.1 Introduction

Wireless sensor networks will enable many new data-intensive sensing applications,

ranging from environmental and infrastructure monitoring to commercial and industrial

sensing. Examples of sensor network-based applications include urban structure monitor-

ing, contaminant transport monitoring, habitat monitoring, and military surveillance.

There are many performance metrics of interest for such sensor networks. We focus on

two that are common to the vast majority of sensor networks:

1. Theaccuracyof the data acquired by the application from the sensor network; and

2. the totalsystem end-to-end delayincurred in the sequence of operations needed for

an application to obtain sensor data.

Although almost all sensor network applications have performance requirements that in-

clude accuracy and delay, their relative importance differs between applications. For ex-

ample, a rainfall data acquisition and analysis application might care about accuracy but not

delay. In contrast, an air traffic monitoring system might care about delay more than accu-

racy. On the other hand, a sensor network designed to aid in military target tracking would

care about both accuracy and delay. We therefore define thequalityof the data provided to

sensor network applications as a combination of accuracy and delay. As in most systems,

improved quality usually comes at somecost. For current wireless sensor networks, the

most important component of cost is arguably the energy consumed in processing a task.

This cost, in turn, is dominated by the energy required to transport messages through the
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sensor field. This cost versus quality trade-off has recently been an active area of research

[15, 121, 124, 129, 138].

This chapter explores sensor network cost and quality performance when a cache is

placed in a sensor field gateway server. We begin our exploration by describing a sensor

network model, and developing policies for caching sensor network data values and then re-

trieving these values via cache lookups. We then propose a new objective function for data

quality that combines accuracy and delay. We use our sensor network model to evaluate

and compare the cost and quality performance of our caching and lookup policies. Finally,

we present results for two specific sensor networks in which user queries are generated for

data values at a set of discrete locations within each sensor sensor field.

5.1.1 Sensor Network Model

Figure 5.1 shows a model of a sensor network configuration in which a cache is part

of the internal architecture of the data server. Because of the cache in Figure 5.1, there

are two possible data paths that can be traversed in response to a query from the backbone

network:

• For a cache miss, the data path includes a sensor field query that is sent into the sensor

field as the result of a user query. In addition, the value that appears in each reply

from the sensor field is used to update the cache. Thus, a cache entry,eli , associates a

locationl i , the most recent value observed at this location,vi , and its timestamp into

the tuple〈l i ,vi , ti〉.

• The data path for a cache hit is much shorter than that of a cache miss. For example,

if the cache is indexed by location, and a cache entry is present for a locationl i

specified in a query, a reply can be generated using only the information in the tuple

that corresponds tol i . Since the processing required to perform this cache lookup

and generate a reply is relatively small, we assume that the system delay for a cache

hit (Sd betweenQuerym andReplym) and its associated cost are both zero.
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Figure 5.1. Sensor Network Model with a Data Server.

As with system end-to-end delay, we determine the accuracy of a reply by quantifying the

value deviationfor cache misses and hits in a consistent manner. Value deviation is the

unsigned difference between the valuevi in Replym and the true value atl i whenReplym

leaves the gateway reply queue.

5.1.2 Caching and Lookup Policies

Our caching and lookup policies are designed to explore alternative techniques for in-

creasing the effective cache hit ratio, and thus conserving system resources. We will see

that for applications that value delay more than accuracy, some of our caching and lookup

policies provide a simultaneous quality improvement and cost savings by approximating

sensor field values using cached values. We will also show that some of our policies pro-

vide an upper bound on the sensor field query rate. The key feature of these policies it that

they piggyback multiple user queries on individual sensor field queries that are pending.
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All of the caching and lookup policies we propose and evaluate incorporate an age

threshold parameterT that specifies how long each entry is stored in the cache. In practice,

picking a good value forT depends on how rapidly the environment being monitored might

change, and the utility of a cached entry as it approaches beingT seconds old. IfT is too

small, it is easy to imagine that the cache might not be effective. IfT is too large, then

the cache may be helpful in terms of saving cost, but may be harmful if value deviation

increases as a function of elapsed time. Clearly, larger values ofT reduce the number of

messages that are sent through the sensor field. We will confirm this intuition, and quantify

the maximum query rate for our sensor field models as a function ofT. Since power

consumption in a wireless sensor field is a function of query rate, bounding our sensor field

query rate can be useful in bounding the resource consumption of our caching and lookup

policies.

In addition to increasingT, we can improve the effective cache hit ratio by exploiting

the spatial locality within sensor field data. We will examine cache “hits” in which the

value at locationl i is approximated based on valuesvi′ from neighboring location(s){i′ ∈

N(i)}. (HereN(i) denotes the neighborhood of locationl i .) Three of our policies below

implement suchapproximatelookups and queries. We will compare these approximate

policies with fourpreciselookup and query policies that use only information associated

with locationl i to process queries that reference locationl i . We now describe all seven of

these caching and lookup policies.All hits, all misses, simple lookupsandpiggybacked

queriesimplement precise lookups and queries. On the other hand,greedy age lookups,

greedy distance lookups, andmedian-of-3 lookupsimplement approximate lookups and

queries.

• All hits (age threshold parameterT = ∞): In this policy cache entries are loaded into

the cache but are never deleted, updated, or replaced.

• All misses(age parameterT = 0): In this policy entries are not stored in the cache.
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• Simple lookups(T): This caching policy results in a cache hit or a cache miss based

on a lookup at the location specified in the user query. Once an entry is loaded into

the cache, it is stored forT seconds and then deleted.

• Piggybacked queries(T): A cache hit or miss is determined only by a lookup at

the location specified in the user query. If a query has already been issued to fill the

cache at a particular location, subsequent queries block in a queue behind the original

query and leverage the pending reply to fulfill multiple queries.

• Greedy age lookups(T): A cache hit or miss is determined by a lookup first at the

location specified in the query, and second by lookups at all neighboring locations.

If there is more than one neighboring cache entry, the freshest (newest) cache entry

is selected. As for piggybacked queries, if a query has already been issued to fill

the cache at any of these locations, subsequent queries block in a queue behind the

original query and leverage the pending reply to fulfill multiple queries. This is also

true for the last two policies: greedy distance lookups and median-of-3 lookups.

• Greedy distance lookups(T): A cache hit or miss is determined by a lookup first at

the location specified in the query, and second by lookups at neighboring locations.

If there is more than one neighboring cache entry, the nearest cache entry is selected.

• Median-of-3 lookups(T). A cache hit or miss is determined by a lookup first at the

location specified in the query, and second by lookups at all neighboring locations.

If there are at least three neighboring cache entries, the median of three randomly

selected entries is selected as the value returned with a cache hit. If there are one

or two neighboring cache entries, a randomly selected entry provides a cache hit.

Otherwise, the query is treated as a miss.

By implementing blocking behind pending sensor field queries, four of these seven

policies have an upper bound on the sensor field query rate,Rf . Specifically,
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max(Rf ) =
|N|
T

. (5.1)

The four policies are piggybacked queries, median-of-3 lookups, and the two approximate

greedy policies. In Equation (5.1),|N| is the number of distinct locations that can be

specified in queries for sensor data. For the 1000-node sensor field model described in

Section 5.2.1,|N|= 1000, so max(Rf ) = 112.5 queries per second whenT = 8.88 seconds.

Without a cache shielding the sensor field from queries (e.g., as in Figure 1.6), the sensor

field query rate for our workload has no upper bound.

The definition of a cache hit (vs. a cache miss) for our three approximate lookup and

query policies (median-of-3 lookups and the two greedy policies) has both similarities and

differences with the traditional definition of a cache hit (or miss). One similarity is that the

data value in the cache may be consistent with the value in the sensor field. This would

always be true for a memory cache for a uniprocessor computer [23], or for a sequentially

consistent multiprocessor [46]. A related similarity is that the data value in the cache may

be different from the value in the sensor field. This would also be the case, some of the

time, in a distributed file system that caches files or blocks [59], or a web-based application

that exploits web caches [81]. These similarities are also shared with the precise lookup

and query policies. An important difference from these traditional caching systems is that

the cache lookup policy itself might introduce some inconsistency (e.g., value deviation).

This is because our approximate policies may emulate a cache hit by approximating a data

value in the sensor field (using neighboring values) rather querying the sensor field for the

missing value.

The caching approaches we propose are designed to be general since they make no

assumptions about whether the overall sensor network architecture uses a structured or

unstructured data model. In other words, our approaches are independent of the implemen-

tation of the Database layer in Figure 1.5. Our sensor network database could implement

a structured schema that extends a standard like the Structured Query Language (SQL)
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[35, 82]. The schema could also be modified while the system is running (e.g., as in IrisNet

[51]). The Database layer might also expose a low-level interface to the application, as in

Directed Diffusion [64].

5.1.3 Quality of Sensor Network Data

As data is acquired by wireless sensor network applications, it has an associatedquality

that is a function of at least two parameters: (1) the delay experienced in receiving the

data, and; (2) the deviation between the value of each data item and the corresponding

data in the sensor field. Acquiring sensor data typically also has acost that reflects the

system resources consumed in querying and delivering the data to the applications. Cost

is determined by the transmission technology used in the sensor field, and the physical

location of the sensors and base stations. We define cost for our sensor network model in

Section 5.2.1.

We normalize the quality of sensor network data in order to compare quality measure-

ments from different sensor networks, as well as for different system parameters (e.g.,

number of sensors, distance between sensors, etc.) We define quality as a linear combina-

tion of normalizedsystem delayand normalizedvalue deviationusing a parameterA, which

is the relative importance of delay when compared with value deviation. The expression

that defines quality, denotedQn, is:

Qn = A
1(

1+e−b
) +(1−A)

1
(1+e−c)

(5.2)

where−b and−c are the exponents used to performsoftmax normalizationon delays and

value deviations, and 0≤ A≤ 1. The exponents in Equation (5.2) are thez scores of their

respective values and are therefore defined as follows:

−b = − Sd−mean(Sd)
stddev(Sd)

, and (5.3)
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−c = − Dv−mean(Dv)
stddev(Dv)

. (5.4)

whereSd is the system delay for a query to be processed by the data server and potentially

to be forwarded to the sensor field, andDv is the deviation of the value used in a query reply.

Since small values of system delay and value deviation are both desirable, smaller values

of Qn, e.g., 0< Qn � 0.5 imply better data quality, and larger values ofQn correspond to

worse quality.

We chose to use softmax normalization for theSd andDv values (which together define

quality) for several reasons:

• Softmax normalization works well on populations with a large dynamic range (e.g.,

some of ourDv values); and

• it is easy to use in practice since it requires that we know only the mean and standard

deviation of ourSd andDv populations.

Softmax normalization also yields transformed values that lie in the range[0,1]. Because

of this property, and because of our definition ofA, 0≤ Qn ≤ 1 andQn = 0.5 when the

system delay and value deviation are simultaneously at their respective means. This type

of normalization has been used by others in neural networks and data mining for pattern

recognition and data classification [13, 21, 56]. It has two other interesting properties that

make it convenient for normalizing our system delays and value deviations:

• For finite values, softmax normalization reaches “softly” toward its maximum and

minimum values of 0 and 1, never quite getting there [111]; and

• its transformed values are more or less linear in the middle range, and have a non-

linearity at both ends that make it well suited for data values with distributions that

have long tails [111].

We considered four normalization methods for our system delays and value deviations:
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• min-maxnormalization;

• z-scorenormalization;

• sigmoidalnormalization; and

• softmaxnormalization.

We also thought it was important to have an expression for quality that is bounded for

both our sensor network data and for data values from other sensor networks. Sigmoidal

normalization and softmax normalization both have this property whereas min-max nor-

malization andz-score normalization do not. This requirement makes median-based or

percentile-based normalization methods undesirable as well. We ultimately chose softmax

normalization over sigmoidal normalization because we found it convenient to conceptu-

alize and graph non-negative values of quality. To provide some intuition for how softmax

normalization varies between 0 and 1, Table 5.1 shows softmax-normalized values for±6

standard deviations from the mean.

Table 5.1.Z Scores and Softmax-normalized Values.

z score of softmax-normalized
data value value

-6 0.0025
-5 0.0067
-4 0.0180
-3 0.0474
-2 0.1192
-1 0.2689
0 0.5
1 0.7311
2 0.8808
3 0.9526
4 0.9820
5 0.9933
6 0.9975
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5.2 Model Details, System Variables and Parameters

5.2.1 Sensor Field Models

We use two different sensor field models in our research in order to generalize our

results. The first model uses random variables to simulate how the environment changes

for 1000 sensor locations. This model gives us the flexibility to vary how the environ-

ment changes. The second model uses real-world trace data to drive how the environment

changes. This trace data was taken from 54 light, temperature, and humidity sensors de-

ployed in the Intel Berkeley Research lab over a five-week period [37]. We describe the

two models in more detail in the remainder of this section.

For the simulated changes to environment, the sensor field is a 3-dimensional field with

rectangular planes on six faces. There is an 8-unit spacing between 10 sensors in the X-

dimension, a 6-unit spacing for 10 sensors in the Y-dimension, and a 4-unit spacing for 10

sensors in the Z-dimension.

In our simulations of this 3-D sensor field, the average number of sensor values that

change in a unit of time (one second) is 9, 90 or 900. Change events in our first sensor field

model occur at discrete locations, in sequence, at a fixed period of between 1/9 and 1/900

seconds. These rates of change also imply that between 0.9% and 90% of our sensor field

values change each second.

Four base stations are placed on the X-Y plane. These four base stations are then con-

nected to the gateway server that has the common cache. The sensors always communicate

with their closest base station, and the properties of each one-way communication to and

from locationl are as follows:

Costl = p r2
b′ | min(Costl ) = 1 unit (5.5)

whererb′ is the distance between locationl and its nearest base stationb′, and p is the

normalization constant for the set of costs. In addition,
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Delayl = qrb′ | max(Delayl ) = 1 second (5.6)

whereq is the normalization constant for the set of delays. We assume that all four base

stations communicate with the gateway server containing the cache at zero cost, with zero

delay, and using infinite bandwidth. Thus, the minimum cost to query a location in the

sensor field has been normalized to 2 units (1 for the query + 1 for the reply), and the

maximum delay to query a location in the sensor field is 2 seconds (not including queuing

delay). The maximum queuing delay at the sensor network query queue is set to 2 seconds,

making the maximum total system delay, max(Sd), just over 4 seconds.

Each base station is connected to the sensor field with an access link with a capacity of

25 queries per second.

For the trace-driven changes to the environment, our second sensor field model has

more than an order of magnitude fewer locations (54 instead of 1000). The sensors are

arranged in a 2-dimensional field at the numbered locations in Figure 5.2, which is taken

from [37]. Each entry in the trace is from a Mica2Dot sensor, which senses humidity,

temperature, light, and battery voltage. The trace contains over 2.2 million entries taken

over more than five weeks in early 2004. This means that one location reads and records

new sensor field values an average of about once every 1.33 seconds.

We wanted to use the most dynamically changing of the sensor field values in our

model to maximize the error in query accuracy. We therefore chose the value with the

largest standard deviation as a function of time. This was light intensity, which is reported

in Lux. A value of 1 Lux corresponds to moonlight, 400 Lux to a bright office, and 100,000

Lux to full sunlight.

Four base stations that share a gateway server and cache are placed in the corners of the

sensor field in our simulations. Again, we assume that sensors always communicate with

their closest base station, and the cost and delay of each one-way communication follow

the models captured in Equations (5.5) and (5.6), respectively. The minimum cost to query
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Figure 5.2. Sensor Field at Intel Berkeley Research Lab.

a location in the sensor field is again 2 units, and the maximum delay to query a location in

the sensor field is again taken to be 2 seconds.

The trace data specifies how the environment changes in the Intel Berkeley lab. There-

fore to vary the rate at which the environment changes relative to the query rate, we are

forced to vary the query rate. As we vary the query rate, we also scale the total access link

capacity and maximum queuing delay according to Table 5.2.

Table 5.2.Query Rates and Scaled Parameters for Trace-driven Sensor Field Model.

Average Query Rate Access Link Capacity Max Queuing Max System
(queries/second) (queries/second) Delay (seconds) Delay (seconds)

0.9 1 7.5 12
9 10 3.75 6
90 100 2 4.025
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5.2.2 Query Workload Model

We use a query workload model that is well suited for sensor network applications that

include monitoring and control functions. Many of these applications have a workload that

includes a periodic arrival process of queries as well as a random arrival process. There are

examples of query workloads that capture both of these components in the literature [64,

68, 135]. On the other hand, other researchers assume that queries either have exclusively

periodic interarrival times [80, 82] or random (usually exponential) interarrival times [35,

141]. We assume that the query workload for our applications consists of the superposition

of two query processes: a polling component that slowly scans the sensor field at a fixed

rate, and a random component that consists of queries to different locations in the sensor

field. Within this random component it is equally likely that each location in the sensor field

will be sampled. This workload model is similar to models used by others in [64, 68, 135].

Specifically, we assume that our workload is characterized by two parameters:

• τ = the period of the polling component of the query workload (τ > 0); and

• λ = the average query arrival rate of a process that represents the random component

of our workload.

For simulated changes to the environment,λ andτ are initially fixed: λ = 81 queries

per second is used as the rate parameter to generate queries with exponentially distributed

interarrival times with mean 1/λ . The parameterτ is initially set to 111.11 seconds so that

the arrival rate for polling queries is 9 queries per second. Whenλ = 81 andτ = 111.11,

the aggregate arrival rate for queries is 81+ 9 = 90 queries per second. Since the total

capacity of the sensor field access links is 4×25= 100 queries per second, their average

link utilization is 0.90 for “all miss” runs, and less for runs that include some cache hits.

For trace-driven changes to the environment,λ andτ vary with the average query rate

according to Table 5.3.
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Table 5.3.Query Rates, andλ andτ Values for Trace-driven Sensor Field Model.

Average Query Rate λ τ

(queries/second) (queries/second) (seconds)
0.9 0.81 600
9 8.1 60
90 81 6

5.2.3 Delay and Value Deviation

We wanted to use our sensor network model to understand the impact of different ap-

plication requirements for delay and value deviation on our results. In order to do this we

ran four different sets of baseline experiments. Each set of experiments reflects different

choices from two different dimensions as follows:

1. Different values of A chosen from{0.1,0.9}, whereA is the relative importance of

system delay when compared with value deviation. Recall thatA appears in Equation (5.2),

which defines quality,Qn.

2. Two different models for how the environment changes,namely using random vari-

ables and using real-world trace data. Section 5.2.1 describes both models for how the

environment changes in detail.

5.3 Discussion of Experiments

Our experiments assess the impact of several factors on the cost and quality perfor-

mance in wireless sensor networks:

• Caching and lookup policies; the

• relative importance of accuracy and system delay; and the

• the manner in which the environment changes.

This assessment evaluates all seven caching and lookup policies by implementing them in

a simulator based on CSIM 19 [120, 119]. We focus on four issues in our assessment:
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• When is a cost vs. quality trade-off present?Recall that quality incorporates both

accuracy and delay. The benefit and cost of different caching and lookup policies

therefore varies with how quality is specified for a given sensor network applica-

tion. We present results for sensor networks in which user queries are generated for

a set of discrete locations within each sensor field. We show that for some quality

requirements, policies that avoid cache misses by computing and returning approxi-

mate values for sensor data can yield a simultaneous quality improvement and cost

savings.

• When present, what is the form and magnitude of the cost vs. quality trade-off?

Within the design space of our seven caching and lookup policies, five of the seven

policies age and then delete cache entries uniformly based on the age threshold pa-

rameter,T. We observe that in many system configurations these five policies expose

a linear cost vs. quality trade-off.

• In what way does the manner in which the environment changes impact performance?

Intuition suggests that augmenting the data acquisition process for a sensor network

application with a cache will work well if the phenomenon being monitored is slowly

changing. On the other hand, if the phenomenon being monitored changes quickly,

caching might not work well. We assess to what extent this intuition is correct by

varying the frequency at which the values in the environment being monitored change

relative to the query rate.

• How does changing the age threshold parameter for cache entries affect perfor-

mance?For the caching policies that we propose and evaluate, the cache hit ratio

for a given workload can be increased by increasingT. The converse is also true.

The cache hit ratio can be decreased by decreasingT. We determine how cost and

quality performance are impacted asT is changed by two orders of magnitude.
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Each data value presented in our results is derived by averaging 20 simulation runs

initialized with different seeds. Each run consists of up to 5,000,000 queries and replies. In

order to make sure that the system is in steady state while sampling query and reply data,

we allow up to 1,000,000 queries to pass through the system and discard the data from

these queries. In the following sections, we will omit showing confidence intervals for our

results. We computed confidence intervals for all cost and quality values presented. We

found that the 90% confidence intervals for quality were within 1.8% of the point value,

and for cost were within 3.4% of the point value, as discussed shortly.

Section 5.4 discusses the results for the experiments described above. We then exam-

ine performance trends for different application quality requirements in Sections 5.5 and

5.6. Finally, we vary the age threshold parameter of our caching and lookup policies in

Section 5.7.

5.4 Discussion of Results

5.4.1 Independent and Trace-driven Changes to the Environment

The results in this section compare how the cost and quality performance differ be-

tween two models for how the environment changes. In the first model, each location

in the environment changes independently and identically according to a normal distribu-

tion with truncated tails. This distribution has meanµ = 0 and has a standard deviation

σ = 0.407514, and tails that are truncated at minimum / maximum values ofσ − 6µ /

σ + 6µ. This standard deviation is the same as the standard deviation of the system end-

to-end delays during a set of 20 runs without a cache for our 1000-node sensor network

model. For this network, changes in sensor field values occur at a fixed periodic rate of

90 locations per second. In the second model, changes in the environment are specified by

the timestamped light intensity readings from the 54-node sensor network deployed in the

Intel Berkeley lab [37].

96



��������	��
��

�

��

��

��

��

���

��� ��� ��	 ��� ��


������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%�  �&'��(������

Figure 5.3. Cost vs. Quality forA = 0.1
and Independent changes over 1000 loca-
tions.

����������	�


�

�

�

��

��

��

��� ��� ��	 ��� ��


������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%�  �&'��(������

Figure 5.4. Cost vs. Quality forA = 0.1
and Trace-driven changes over 54 loca-
tions.
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Figure 5.5.Cost vs. Delay forA= 0.1 and
Independent changes over 1000 locations.
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Figure 5.6.Cost vs. Delay forA= 0.1 and
Trace-driven changes over 54 locations.
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Figure 5.7. Cost vs. Value deviation for
A = 0.1 and Independent changes over
1000 locations.
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Figure 5.8. Cost vs. Value deviation for
A = 0.1 and Trace-driven changes over 54
locations.
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We first explore cost and quality performance when value deviation is significantly

more important to quality than delay (as evidenced by a value ofA = 0.1), in Figures 5.3

through 5.8. Figure 5.3 shows cost vs. quality for independent changes to the environment

drawn from the normal distribution described above. Comparing this figure with Figure 5.4,

which shows cost vs. quality for trace-driven changes to the environment, we find results

are surprisingly similar in both cases. We see that there is a cost vs. quality trade-off when

A is sufficiently small (again,A = 0.1 in these figures). Also, two of our precise lookup

and query policies (simple lookups and piggybacked queries) provide the best (or close to

best) quality performance whenA = 0.1. However, if cost is more important than quality,

the two greedy policies provide the flexibility to trade decreased quality for a cost savings

of up to 50% (see Figure 5.4). It is easy to understand the characteristic shape and form

of Figures 5.3 and 5.4 by understanding howA combines the underlying delay and value

deviation distributions to yield quality. Consider the results when changes to the environ-

ment are driven by independent random variables: Figure 5.3 is a normalized combination

of Figure 5.5 (with weight 0.1), and Figure 5.7 (with weight 0.9). Since the dispersion

of delay values in Figure 5.5 is fairly small, Figure 5.3 has the similar trends and charac-

teristics to Figure 5.7. Similar results hold for trace-driven changes to the environment:

Figure 5.6 and Figure 5.8 combine to yield the main results in Figure 5.4. However, be-

causeA = 0.1 and 1−A = 0.9 in Equation (5.2), Figure 5.4 has shape and form that are

similar to Figure 5.8.��������	��
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Figure 5.9. Cost vs. Quality forA = 0.9
and Independent changes over 1000 loca-
tions.
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Figure 5.10. Cost vs. Quality forA = 0.9
and Trace-driven changes over 54 loca-
tions.
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Figure 5.11. Cost vs. Delay forA = 0.9
and Independent changes over 1000 loca-
tions.
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Figure 5.12. Cost vs. Delay forA = 0.9
and Trace-driven changes over 54 loca-
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Figure 5.13. Cost vs. Value deviation
for A = 0.9 and Independent changes over
1000 locations.
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Figure 5.14. Cost vs. Value deviation for
A = 0.9 and Trace-driven changes over 54
locations.

Because application requirements for accuracy and delay can be quite different, we now

consider cost and quality performance when delay is significantly more important to quality

than delay (A = 0.9), as shown in Figures 5.9 through 5.14. The even-numbered figures,

Figures 5.10, 5.12, and 5.14, show results for light intensity in Lux measured over time

in the Intel Berkeley lab data set. These results are forT = 90 seconds, and 0.9 queries

per second. The odd-numbered figures, Figures 5.9, 5.11, and 5.13, are for independent

changes to the environment with both the age parameter,T, and the average query rate

scaled for the more rapidly changing environment. Specifically,T = 8.88 seconds and the

average user query rate is 90 queries per second. The most remarkable result in these figures

is that there is no trade-off between cost and quality when we significantly prioritize delay

over value deviation (e.g., whenA= 0.9). The two greedy caching and lookup policies have

the best cost performance and the best quality performance for both models of changing

the environment (see Figure 5.9 and Figure 5.10). Even though the “all hits” policy has
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the best absolute performance in these figures, we don’t consider this a practical policy

since it never updates the cache. For trace-driven changes to the environment, even though

the dispersion of value deviations in Figure 5.14 is greater than the dispersion of delays in

Figure 5.12, delay still drives quality. In other words, the trends and characteristics of cost

and quality performance in Figure 5.10 are driven by the delays shows in Figure 5.12.

Similar results hold for independent changes to the environment. The cost and quality

performance in Figure 5.9 is driven by the system delays shown in Figure 5.11.

5.4.2 Correlated and Trace-driven Changes to the Environment

We wanted to build on the results in the previous section by capturing the fact that

sensor field readings are correlated in both space and time. This feature is missing when

we model how the environment changes using independent random variables, as in the

previous section. We therefore revised our model with changes that are i.i.d. to make

changes in the environment correlated in both space and time. At timet + 1, the value

at each locationl is drawn from a normal distribution with mean

µl ,t+1 =
1
3

µ +
1
3

µl ,t +
1
3

µN(l),t

and the same standard deviation (σ ) as in Section 5.4.1. The long-term mean of this distri-

bution isµ. N(l) denotes the neighbors of locationl , and each neighborl ′ of l contributes

to µN(l),t in proportion toµl ′,t/r l ′, wherer l ′ is the distance between locationsl andl ′. This

model for a changing environment is based on the model for correlated sensor network data

developed by Jindal and Psounis [70].

We can draw at least three conclusions from our experiments using the correlated and

trace-driven models for how the environment changes. Results from these experiments

appear in Figures 5.15 through 5.30.

1. There is a cost vs. quality trade-off for some quality requirements but not others.

For example, consider the results shown in Figures 5.15 and 5.16. Figure 5.16 shows cost
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Figure 5.15. Cost vs. Quality forA = 0.1
and Correlated changes over 1000 loca-
tions.
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Figure 5.16. Cost vs. Quality forA = 0.1
and Trace-driven changes over 54 loca-
tions.
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Figure 5.17. Cost vs. Delay forA = 0.1
and Correlated changes over 1000 loca-
tions.
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Figure 5.18. Cost vs. Delay forA = 0.1
and Trace-driven changes over 54 loca-
tions.
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Figure 5.19. Cost vs. Value deviation for
A = 0.1 and Correlated changes over 1000
locations.
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Figure 5.20. Cost vs. Value deviation for
A = 0.1 and Trace-driven changes over 54
locations.
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Figure 5.21.Delay vs. Quality forA= 0.1
and Correlated changes over 1000 loca-
tions.
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Figure 5.22.Delay vs. Quality forA= 0.1
and Trace-driven changes over 54 loca-
tions.
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Figure 5.23. Value deviation vs. Quality
for A = 0.1 and Correlated changes over
1000 locations.
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Figure 5.24. Value deviation vs. Quality
for A = 0.1 and Trace-driven changes over
54 locations.

Table 5.4. Hit ratios, Costs, and Delays forT = 8.88, 90 Queries per second, and Corre-
lated changes over 1000 locations.

Policies Hit ratio Cost Delay
All hits 1 0 0
All misses 0 94 1.18
Simple lookup 0.40 56 0.69
Greedy age lookup 0.62 37 0.39
Greedy distance lookup 0.60 38 0.44
Median-of-3 lookup 0.55 43 0.51
Piggyback queries 0.40 57 0.69
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Table 5.5. Hit ratios, Costs, and Delays forT = 90, 0.9 Queries per second, and Trace-
driven changes over 54 locations.

Policies Hit ratio Cost Delay
All hits 1 0 0
All misses 0 19 4.4
Simple lookup 0.59 7.7 1.0
Greedy age lookup 0.78 4.0 0.47
Greedy distance lookup 0.76 4.4 0.55
Median-of-3 lookup 0.71 5.4 0.68
Piggyback queries 0.59 7.7 1.0

versus quality for all seven caching and lookup policies, whereA = 0.1 and the values at

each location are changed according to the Intel Berkeley lab trace [37]. At the smallest

cost, we have a 100% cache hit ratio (labeled “All hits”) that provides a quality of below 0.6

for zero cost. For the largest cost, we see that a 0% cache hit ratio (labeled “All misses”)

provides the third-best quality at a cost of approximately 19 units. Recall that our cost

units are normalized units, and are proportional to the square of the distance to query a

particular location in the sensor field (see Section 5.2.1 for more detail). Recall also that

for quality, smaller values indicate better quality. The remaining five caching and lookup

policies provide a linear trade-off between cost and quality. Figure 5.15 also shows a trade-

off between cost and quality for the same value ofA and the same seven caching and lookup

policies, but with changes to the environment now modeled by a series of values correlated

in space and time. There are two observations worth noting when comparing these first

two figures. First, the cost values in Figure 5.16 are less than in Figure 5.15 because the

distances within the sensor field are smaller. Second, the trends are similar between these

two figures, with the exception of the increase in quality of the “all misses” policy between

Figure 5.15 and Figure 5.16. This worse “all misses” quality is due entirely to an increase

in the normalized delay term in the left hand side of Equation (5.2). This can be verified by

comparing the relative differences in delays between the policies, shown on the horizontal

axes in Figures 5.17 and 5.18.
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2. Our choice of A is important because A determines to what extent delay or value

deviation is the most important component of quality.A value ofA = 0.1 is used in Fig-

ures 5.15 through 5.24. This value ofA makes value deviation more important than system

delay. This is demonstrated in Figures 5.21–5.24. Figure 5.24 shows a mostly positive

correlation between value deviation and quality, whereas Figure 5.22 shows a mostly nega-

tive correlation between delay and quality. These figures are both for trace-driven changes

to the environment. Figures 5.21 and 5.23 show that the same results hold for correlated

changes to the environment: There is a positive correlation between value deviation and

quality on the one hand, but a negative correlation between delay and quality on the other.

In studying Figures 5.15 through 5.30 it is interesting to understand which system vari-

ables depend on which system parameters. For example, cost, delay, and hit ratio values in

these simulation results each depend on the following three variables:

• The caching and lookup policies themselves (including the value ofT); the

• physical configuration of the sensor field; and the

• query arrival process.

Thus, a cost vs. delay or a cost vs. hit ratio graph should be the same for different experi-

ments in which these three variables are held constant. Figure 5.17 shows the characteristic

cost vs. delay results for our 1000-location network with caching and lookup policies pa-

rameterized withT = 8.88 seconds. Figure 5.18 shows the characteristic cost vs. delay

results for the smaller-scale, 54-location network with caching and lookup policies param-

eterized withT = 90. In other words, these figures show cost vs. delay for any legal value

of A, a fixed value ofT, and the respective model for changing the environment. Note that

the trends are the same in both of these figures. The most significant difference between the

two figures is the increase in delay for the “all misses” case in Figure 5.18 when compared

with Figure 5.17. This is due to the increase in the queuing delay at the sensor network

query queue caused by the lower-capacity access link. To see how cost and delay both in-
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crease with lower cache hit ratios, Table 5.4 shows the cache hit ratio for each of the (cost,

delay) points in Figure 5.17. Similarly, Table 5.5 shows the hit ratio for each of the (cost,

delay) points in Figure 5.18.

Value deviation depends on the same parameters listed above, and additionally on the

manner in which the environment changes. Thus, cost vs. value deviation graphs are the

same when the policies, sensor field, query arrival process, and method for changing the

environment are all identical. Figure 5.19 and Figure 5.20 show cost vs. value deviation

results for correlated changes and trace-driven changes to the environment, respectively.

The most interesting difference between the two figures is the overall increase the disper-

sion of the value deviations in Figure 5.20 when compared those in Figure 5.19. This is

because the variation in sensor field values is much greater in the Intel Berkeley trace data

than values that are drawn from our normal distribution with a time-dependent mean.

We now examine system configurations for which delay is the more important com-

ponent of quality in more detail. Figures 5.25 through 5.30 show such configurations for

a value ofA = 0.9. Figure 5.28 shows a strong positive correlation between delay and

raw quality whereas Figure 5.30 shows a negative correlation between value deviation and

quality. These figures are both for trace-driven changes to the environment sensed by 54

nodes. However, Figure 5.27 and Figure 5.29 show that the same delay and value deviation

results hold for correlated changes to the environment with 1000 locations.
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Figure 5.25. Cost vs. Quality forA = 0.9
and Correlated changes over 1000 loca-
tions.
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Figure 5.26. Cost vs. Quality forA = 0.9
and Trace-driven changes over 54 loca-
tions.

105



����������	
�����

�

���

���

���

���

�

���

��� ��� ��	 ��
 ���

������

�
��
��

��������

����������

������������

���� ���!�������

���� �� ���������

"� ��#$�%$�������

&�!!�'�(��)�����

Figure 5.27.Delay vs. Quality forA= 0.9
and Correlated changes over 1000 loca-
tions.
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Figure 5.28.Delay vs. Quality forA= 0.9
and Trace-driven changes over 54 loca-
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Figure 5.29. Value deviation vs. Quality
for A = 0.9 and Correlated changes over
1000 locations.
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Figure 5.30. Value deviation vs. Quality
for A = 0.9 and Trace-driven changes over
54 locations.

3. Different lookup policies perform best depending on whether delay or value de-

viation is most important to the application.Recall that the first of our alternative age-

based policies (simple lookups, piggybacked queries, greedy age lookups, greedy distance

lookups, and median-of-3 lookups) performs “simple lookups” in the sensor data cache to

determine whether or not we have a cached value for a particular location. Recall also that

four other caching policies add features that are designed to improve the effective cache hit

ratio and thus conserve system resources. These policies are piggybacked queries, greedy

age lookups, greedy distance lookups, and median-of-3 lookups.

If quality is more important to the application than cost, and value deviation is more im-

portant than delay, simple lookups and piggybacked queries provide the best performance.

This can be seen in Figures 5.15 and 5.16. In both of these figures, simple lookups and

piggybacked queries yield the best quality, other than the “all misses” policy for corre-

lated changes. When value deviation is most important, the expense of taking a cache miss
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(by not computing an approximate value from neighboring values for these two policies)

is worthwhile, since value deviation is deemed most important. If cost is at a premium

compared with quality, using greedy age lookups or greedy distance lookups is preferred.

These two policies have the most favorable cost performance in both sensor field models,

other than the “all hits” case in which the sensor field is never queried.

If delay is more important to quality than value deviation, Figures 5.25 and 5.26 show

that performing greedy age lookups or doing greedy distance lookups yields the best per-

formance. This is true regardless of whether cost or quality is more important to the appli-

cation. We again assume that the “all hits” case is not useful to realistic applications. For

these policies, getting the fast response time of a cache “hit” (which might be approximated

from values at one or more neighboring locations) is worthwhile, since low delay is more

important than a more accurate value.

The fact that different lookup policies perform best for different application require-

ments can be explained by examining the underlying delays and value deviations of the

policies themselves. For example, consider the case whereA = 0.1 and changes to the

environment are driven by the Intel Berkeley lab traces. Figure 5.22 shows that the delay

for the simple lookup and piggyback query policies is greater than that of the median-of-3

and greedy lookup policies. However, Figure 5.24 shows that the value deviation for the

simple lookup and piggyback query policies is significantly less than that of the median-

of-3 and greedy lookup policies. A value ofA = 0.1 biases quality toward value deviation

performance rather than delay performance. Figure 5.16 therefore shows that the quality

supported by the simple lookup and piggyback query policies is superior to the quality

supported by the greedy and median-of-3 lookup policies. Now consider the case where

A = 0.9 and changes to the environment are again driven by the lab trace data. Figure 5.30

shows that the value deviation for the greedy policies is greater than for the simple and pig-

gyback policies, and the median-of-3 policy. However, Figure 5.28 shows that the delay for

the greedy policies is less than that of the other policies. A value ofA = 0.9 biases quality
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toward delay performance rather than value deviation performance. Figure 5.26 therefore

shows that the cost incurred for doing greedy age lookups or greedy distance lookups is

superior to (i.e., less than) the cost incurred by the other policies for quality that is also

better.

We observed our widest confidence intervals in the results presented in this section.

Specifically, for our simulated sensor field (with 1000 nodes), the 90% confidence interval

surrounding the All misses cost was±3.4%. We also observed our widest confidence

interval for quality. For our sensor network model of the Intel Berkeley lab, the 90%

confidence interval surrounding the All misses quality was±1.8%, whenA = 0.9.

It is helpful to summarize the cost and quality performance results presented above as

follows:

• When value deviation is more important to quality than delay, there is a linear cost vs.

quality trade-off. We obtain the best cost performance by implementing policies that

approximate sensor values by using cached values from nearby locations. The best

quality performance is achieved by policies that always query and cache the sensor

field location specified in the user query.

• When delay is more important than value deviation, policies that approximate values

using cached values from nearby locations provide the best cost performance as well

as the best quality performance.

• These results hold for both simulated changes to the environment and trace-driven

changes to the environment.

5.5 Performance Trends when Value Deviation is Most Important

Our baseline results provide a thorough understanding of cost and quality performance

in wireless sensor networks for two models of how the environment changes. We next
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investigate performance trends that emerge as the query rate increases or decreases relative

to the rate at which the environment changes.

Because our simulator fully models an environment with correlated changes, we ex-

plicitly vary the rate at which the environment changes. To do this we increase the number

of locations changed per second from 9 to 90 to 900 while maintaining a query workload

with an average rate of 90 queries per second. The Intel Berkeley lab traces specify how

the environment changes for our trace-driven experiments. In this case, we vary the relative

rate at which the environment changes by decreasing the average query rate from 90 to 9

to 0.9 queries per second.

We begin this investigation by considering cost and quality performance when value

deviation is more important in determining query and reply quality than system end-to-end

delay. Results for these simulations appear in this section. In the following section, we

explore sensor network applications for which system delay is more important than value

deviation.

The same three high-level conclusions presented in the last section hold true when

the relative rate at which the environment changes is increased by two orders of magni-

tude. However, some of the underlying results differ either qualitatively or quantitatively.

Figures 5.31 through 5.36 show these results for correlated changes to the environment.

Figures 5.37 through 5.42 show the corresponding results for trace-driven changes to the

environment.

If value deviation is more important than delay, simple lookups and piggybacked queries

again provide the best performance when quality is more important than cost. This can be

seen in Figures 5.31, 5.32 and 5.33. If cost is at a premium compared with quality, greedy

age lookups or greedy distance lookups trade worse quality for lower cost. In fact, these

policies have the most favorable cost performance, other than the “all hits” case. These

figures also show that our results are robust with respect to how rapidly our correlated

environment changes. For example, the trade-off between cost and quality is linear in Fig-
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Figure 5.31.Cost vs. Quality forA = 0.1,T = 8.88 seconds,
90 Queries / second, and 9 of 1000 Correlated changes / sec-
ond.
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Figure 5.32.Cost vs. Quality forA = 0.1,T = 8.88 seconds,
90 Queries / second, and 90 of 1000 Correlated changes /
second.
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Figure 5.33.Cost vs. Quality forA = 0.1,T = 8.88 seconds,
90 Queries / second, and 900 of 1000 Correlated changes /
second.
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Figure 5.34. Value deviation vs. Quality forA = 0.1, T =
8.88 seconds, 90 Queries / second, and 9 of 1000 Correlated
changes / second.
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Figure 5.35. Value deviation vs. Quality forA = 0.1, T =
8.88 seconds, 90 Queries / second, and 90 of 1000 Correlated
changes / second.
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Figure 5.36. Value deviation vs. Quality forA = 0.1, T =
8.88 seconds, 90 Queries / second, and 900 of 1000 Corre-
lated changes / second.
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Figure 5.37.Cost vs. Quality forA = 0.1,T = 9 seconds, 90
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.38. Cost vs. Quality forA = 0.1,T = 9 seconds, 9
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.39.Cost vs. Quality forA = 0.1,T = 9 seconds, 0.9
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.40. Value deviation vs. Quality forA = 0.1,T = 9
seconds, 90 Queries / second and Trace-driven changes over
54 locations.
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Figure 5.41. Value deviation vs. Quality forA = 0.1,T = 9
seconds, 9 Queries / second and Trace-driven changes over
54 locations.
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Figure 5.42. Value deviation vs. Quality forA = 0.1,T = 9
seconds, 0.9 Queries / second and Trace-driven changes over
54 locations.
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ures 5.31, 5.32, and 5.33. Excluding the “all hits” case again, the range of quality values

decreases as the rate at which the environment changes increases. In spite of these dif-

ferences in quality performance, the relative cost and quality performance of most of the

policies remain the same. Figures 5.34, 5.35, and 5.36 confirm a strong positive correlation

between value deviation and quality whenA = 0.1. Examining these figures in increasing

order illustrates how value deviation increases as the rate at which the environment changes

increases.

For trace-driven changes to the environment, simple lookups and piggybacked queries

also provide the best performance when quality is more important than cost. This can be

seen in Figures 5.37, 5.38, and 5.39. The trade-off between cost and quality is also linear in

these Figures. Although the costs increase from Figure 5.37 to Figure 5.38 to Figure 5.39,

the range of quality is approximately the same (again, excluding the “all hits” case).

Figures 5.40, 5.41, and 5.42 confirm a positive correlation between value deviation and

quality whenA = 0.1 and changes to the environment are driven by real-world trace data.

Examining these figures in increasing order illustrates how cost increases as the average

query rate (and thus the cache hit ratio) decreases.

We have shown that when value deviation is more important to quality than system

delay, we consistently observe a cost vs. quality trade-off which can be characterized as

follows:

• Approximatequery and lookup policies, which approximate sensor field values by

using values from one or more nearby cached locations, provide the best cost perfor-

mance.

• Precisequery and lookup policies, which always query the specified location in the

sensor field, provide the best quality performance.
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• For our sensor network model with correlated changes to the environment, this trade-

off occurs even as we vary the rate that the environment changes by two orders of

magnitude.

• For our smaller sensor network model that uses real-world trace data, these results

hold as we vary the rate at which the sensor field is queried, also by two orders of

magnitude.

5.6 Performance Trends when End-to-End Delay is Most Important

In the previous section we presented performance results that are important to sensor

network applications for which high accuracy (i.e., low value deviation) is the most im-

portant factor in the quality of their data. In this section we consider how performance

varies as the query rate increases or decreases relative to the rate at which the environment

changes when system end-to-end delay is most important. For correlated changes to the

environment, we again vary the rate at which the environment changes from 9 to 90 to 900

locations per second while maintaining a query workload with an average rate of 90 queries

per second. For the Intel Berkeley lab traces, we again vary the relative rate at which the

environment changes by decreasing the average query rate from 90 to 9 to 0.9 queries per

second.

We examine system configurations for which delay is a more important component of

quality than value deviation. Figures 5.43 through 5.48 show such configurations for cor-

related changes to the environment. For correlated changes to the environment, the cost

remains constant for policies as the rate of change for sensor values in the environment

increases from 9 locations/s to 900 locations/s. At the same time, the quality performance

for all policies is very similar, but not identical. Figures 5.49 through 5.54 show configura-

tions for trace-driven changes to the environment. In these system configurations, the cost

increases as the average query rate and the cache hit ratio both decrease.
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Figure 5.43. Cost vs. Quality forA = 0.9, T = 8.88 sec-
onds, 90 Queries / second, and 9 of 1000 Correlated changes
/ second.
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Figure 5.44.Cost vs. Quality forA= 0.9, T = 8.88 seconds,
90 Queries / second, and 90 of 1000 Correlated changes /
second.
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Figure 5.45.Cost vs. Quality forA= 0.9, T = 8.88 seconds,
90 Queries / second, and 900 of 1000 Correlated changes /
second.
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Figure 5.46. Delay vs. Quality forA = 0.9, T = 8.88 sec-
onds, 90 Queries / second, and 9 of 1000 Correlated changes
/ second.
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Figure 5.47. Delay vs. Quality forA = 0.9, T = 8.88 sec-
onds, 90 Queries / second, and 90 of 1000 Correlated changes
/ second.
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Figure 5.48. Delay vs. Quality forA = 0.9, T = 8.88
seconds, 90 Queries / second, and 900 of 1000 Correlated
changes / second.

117



A value ofA = 0.9 is used in Figures 5.43 through 5.54. This choice ofA makes delay

significantly more important to quality than value deviation. This is demonstrated, for ex-

ample, by Figures 5.46, 5.47, and 5.48. These figures all show a strong positive and linear

correlation between delay and quality for correlated changes to the environment. Examin-

ing these figures also illustrates that delays for specific policies are independent of the rate

at which the environment changes, and thus are constant for these system configurations

since the query workloads are the same.

For correlated changes to the environment, Figures 5.43, 5.44, and 5.45 show that per-

forming greedy age lookups or greedy distance lookups yields the best cost performance,

and the best quality performance, excluding the “all hits” case. These figures also show

that our results are robust with respect to how rapidly our correlated sensor field values

change, and that the relative performance differences among our policies remain the same.

Similar results hold for trace-driven changes to the environment. These can be seen in

Figures 5.49, 5.50, and 5.51. However, it appears that as higher cache hit ratios (e.g., in

Figure 5.49) cause a performance convergence among the caching policies, the median-of-3

policy exhibits better cost and quality performance than doing greedy lookups.

We have seen that for correlated changes to the environment, one or more of the greedy

policies provide the best cost and quality performance among the realistic policies. For

trace-driven changes to the environment, greedy policies (including the median-of-3 policy)

also provide the best cost performance and the best quality performance. This can be seen

in Figures 5.49, 5.50, and 5.51, in which there is no trade-off between cost and quality. As

most costs increase from Figure 5.49 to Figure 5.50 to Figure 5.51, the range of quality

values also increases. However, these quality values remain in the continuum between the

“All hits” and “All misses” quality values.

Figures 5.52, 5.53, and 5.54 illustrate the positive correlation between delay and quality

whenA = 0.9 and changes to the environment are driven by the lab trace data. Examining
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Figure 5.49.Cost vs. Quality forA= 0.9, T = 9 seconds, 90
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.50. Cost vs. Quality forA = 0.9, T = 9 seconds, 9
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.51.Cost vs. Quality forA= 0.9,T = 9 seconds, 0.9
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.52. Delay vs. Quality forA = 0.9, T = 9 seconds,
90 Queries / second and Trace-driven changes over 54 loca-
tions.
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Figure 5.53.Delay vs. Quality forA= 0.9, T = 9 seconds, 9
Queries / second and Trace-driven changes over 54 locations.
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Figure 5.54. Delay vs. Quality forA = 0.9, T = 9 seconds,
0.9 Queries / second and Trace-driven changes over 54 loca-
tions.
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these figures in increasing order confirms that the trajectory of increases in cost (as the

average query rate decreases) is independent ofA.

In summary, we have shown that caching approaches that prevent cache misses by com-

puting and returning approximate values for sensor data can avoid a trade-off between cost

and quality. This is because when delay is more important than value deviation, the ben-

efit to both cost and quality achieved by using approximate values outweighs the negative

impact on quality due to the approximation. Furthermore, we have demonstrated that these

results are robust with respect to the manner in which the environment changes for two

different sensor field models.

5.7 Performance Impact of Cache Entry Age Threshold (T)

5.7.1 Larger Values ofT

Since power is typically a critical resource in wireless sensor networks, we wanted

to understand the effects of decreasing resource consumption by reducing the volume of

sensor field query traffic. We accomplished this by increasing the value of the age threshold

parameters associated with cache entries (our values ofT), and thus boosting the cache hit

ratio for our age-based policies. For simple lookups, piggybacked queries, the median-of-3

policy, and both greedy policies, age thresholds ofT = 88.88 andT = 900 seconds were

used for correlated and trace-driven changes, respectively. Theses values are an order of

magnitude or more larger than the values ofT used for our earlier results. For our larger

environment (with 1000 locations), the sensor field was queried an average of 90 times per

second and changed at a rate of 90 locations per second. For our smaller environment (with

54 locations), the sensor field was queried at a rate of 0.9 queries per second and changed at

a rate of approximately once every 1.33 seconds (per the trace data). Our results for larger

values ofT appear in Figures 5.55 through 5.66.

The most noticeable difference between the results in Figures 5.55 through 5.66 when

compared with our earlier results is that the performance differences between the five age-
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based policies are quite small. This similar performance of our age-based policies is most

pronounced for performance metrics that are independent ofA (e.g., cost, delay, and hit

ratio). For example, Figure 5.57 and Figure 5.58 show cost vs. delay performance for all

non-trivial policies (from simple lookups through piggybacked queries) that is almost the

same for each model of how the environment changes. The corresponding hit ratios for

these policies are also virtually identical within their respective models (see Table 5.6 and

Table 5.7). In fact, the hit ratio for all of these policies falls between 88% and 90% for

correlated changes, and between 94% and 95% for trace-driven changes. These hit ratios

are much greater than our earlier results in which the hit ratio ranges were 40% to 62% in

Table 5.4, and 59% to 78% in Table 5.5. Even the characteristic cost vs. value deviation

graphs, Figure 5.59 and Figure 5.60, show much less difference in value deviation than our

earlier results. In all of our results for larger values ofT, the much higher hit ratios (88%

or greater) make the cost performance of our policies fairly close to the case where the hit

ratio is 100% (i.e., the “all hits” case). Furthermore, the quality performance is close to the

quality performance of the all hits case when either changes are correlated (see Figures 5.55

and 5.61) or delay is deemed more important than value deviation (e.g., whenA = 0.9 in

Figure 5.62).����������	
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Figure 5.55. Cost vs. Quality forA =
0.1, T = 88.88 seconds, and Correlated
changes over 1000 nodes.
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Figure 5.56. Cost vs. Quality forA =
0.1, T = 900 seconds, and Trace-driven
changes over 54 nodes.

We were surprised that in spite of significant changes in our cache entry aging param-

eter, some of our important earlier results still hold. These results can be summarized as

follows:
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Figure 5.57. Cost vs. Delay forA =
0.1, T = 88.88 seconds, and Correlated
changes over 1000 nodes.
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Figure 5.58. Cost vs. Delay forA =
0.1, T = 900 seconds, and Trace-driven
changes over 54 nodes.����������	
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Figure 5.59. Cost vs. Value deviation for
A = 0.1, T = 88.88 seconds, and Corre-
lated changes over 1000 nodes.
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Figure 5.60. Cost vs. Value deviation for
A = 0.1, T = 900 seconds, and Trace-
driven changes over 54 nodes.����������	
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Figure 5.61. Cost vs. Quality forA =
0.9, T = 88.88 seconds, and Correlated
changes over 1000 nodes.
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Figure 5.62. Cost vs. Quality forA =
0.9, T = 900 seconds, and Trace-driven
changes over 54 nodes.

Table 5.6.Hit ratios, Costs, and Delays forT = 88.88, 90 Queries per second, and Corre-
lated changes over 1000 locations.

Policies Hit ratio Cost Delay
Simple lookup 0.88 12 0.14
Greedy age lookup 0.88 12 0.13
Greedy distance lookup 0.89 10 0.13
Median-of-3 lookup 0.90 10 0.12
Piggyback queries 0.88 12 0.14
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Figure 5.63. Cost vs. Delay forA =
0.9, T = 88.88 seconds, and Correlated
changes over 1000 nodes.
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Figure 5.64. Cost vs. Delay forA =
0.9, T = 900 seconds, and Trace-driven
changes over 54 nodes.
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Figure 5.65. Cost vs. Value deviation for
A = 0.9, T = 88.88 seconds, and Corre-
lated changes over 1000 nodes.
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Figure 5.66. Cost vs. Value deviation for
A = 0.9, T = 900 seconds, and Trace-
driven changes over 54 nodes.

Table 5.7. Hit ratios, Costs, and Delays forT = 900, 0.9 Queries per second, and Trace-
driven changes over 54 locations.

Policies Hit ratio Cost Delay
Simple lookup 0.94 1.2 0.14
Greedy age lookup 0.95 0.97 0.11
Greedy distance lookup 0.95 0.94 0.11
Median-of-3 lookup 0.95 0.94 0.11
Piggyback queries 0.94 1.2 0.14
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• ForA= 0.1, value deviation still mostly drives the trade-off between quality and cost.

For example, Figure 5.56 shows the same trends as its value deviation counterpart,

Figure 5.60, except in the “all misses” case. In this case, the poor delay performance

of all misses shown in Figure 5.58 hurts the corresponding all misses quality perfor-

mance in Figure 5.56.

• ForA= 0.9, system delay drives quality, and there is no trade-off between quality and

cost. Thus for correlated changes, Figure 5.61 exhibits the same trends as its delay

counterpart, Figure 5.63. Likewise for trace-driven changes, Figure 5.62 shows the

same trends as Figure 5.64.

5.7.2 Smaller Values ofT

In the previous section we examined results for high cache ratios, which were induced

by increasing the age threshold,T. We also wanted to study system configurations with

low cache hit ratios. To obtain results for these configurations, we decreased our values

of T by an order of magnitude when compared with the values ofT used to produce the

baseline results (see Section 5.4). For our five age-based policies, an age parameter of

T = 9 seconds was used for our trace-driven experiments, andT = 0.88 seconds was used

with correlated changes. Note also that these values are two orders of magnitude smaller

than the respective values ofT used in Section 5.7.1. The results for smaller values ofT

appear in this section in Figures 5.67 through 5.74.
����������	
�����

�

��

��

��

��

���

��� ��� ��	 ��� ��


������

�
�
��

��������

����������

�������������

������� ��������

������������������

!���"#�$#��������

%�  �&'��(������

Figure 5.67.Cost vs. Quality forA = 0.1,
T = 0.88 seconds, and Correlated changes
over 1000 nodes.
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Figure 5.68.Cost vs. Quality forA = 0.1,
T = 9 seconds, and Trace-driven changes
over 54 nodes.
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Figure 5.69. Cost vs. Value deviation for
A= 0.1, T = 0.88 seconds, and Correlated
changes over 1000 nodes.
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Figure 5.70. Cost vs. Value deviation for
A = 0.1, T = 9 seconds, and Trace-driven
changes over 54 nodes.

The most interesting results in Figures 5.67 through 5.74 are the negative results. Fig-

ure 5.67 shows that a cache can, in some operating regions, provide only marginal ben-

efit when compared to having no cache (illustrated by the “All misses” results). Further-

more, by using an inappropriate caching and lookup policy, the presence of a cache for a

sensor network can even hurt quality performance. For example, Figure 5.67 shows that

the greedy lookup policies yield a cost savings of about 4% while incurring a significant

penalty in quality. What renders these policies perhaps not worthwhile (because of their

worse quality performance) is the significant value deviation that is introduced by a cache

that is almost ineffective. These value deviations are shown in Figure 5.69 and Figure 5.70,

in which the greedy policies and the median-of-3 lookup policy show significantly worse

value deviation for a negligible or small amount of cost savings.

There are also interesting positive results for both sensor networks. The cost vs. quality

trade-off favors using simple lookups or piggybacked queries when value deviation drives

quality (e.g., whenA = 0.1). For correlated changes, Figure 5.67 shows that using simple

lookups or piggybacked queries provides about the same quality performance as all misses,

while yielding a small cost savings of 1-2%. The cost savings and quality performance

are both more compelling for trace-driven changes. Figure 5.68 shows that these policies

provide better cost and quality performance for the 54-node network model. Specifically,

the cost savings increases to a savings of 12-15% while quality also improves by about 5%.
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Figure 5.71.Cost vs. Quality forA = 0.9,
T = 0.88 seconds, and Correlated changes
over 1000 nodes.
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Figure 5.72.Cost vs. Quality forA = 0.9,
T = 9 seconds, and Trace-driven changes
over 54 nodes.����������	
�����

�

��

��

��

��

���

� ��� ��� ��� ��� � ���

�	
��


�
��

�

�����

�

�����	�

����
	�
�����

��		�����	�
�����

��		��������
�����

�	���� �! "�
�����

#����$�%��&�	��	�

Figure 5.73. Cost vs. Delay forA = 0.9,
T = 0.88 seconds, and Correlated changes
over 1000 nodes.
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Figure 5.74. Cost vs. Delay forA = 0.9,
T = 9 seconds, and Trace-driven changes
over 54 nodes.

Table 5.8. Hit ratios, Costs, and Delays forT = 0.88, 90 Queries per second, and Corre-
lated changes over 1000 locations.

Policies Hit ratio Cost Delay
Simple lookup 0.02 92 1.15
Greedy age lookup 0.08 88 0.93
Greedy distance lookup 0.06 89 1.01
Median-of-3 lookup 0.05 90 1.07
Piggyback queries 0.02 92 1.14

Table 5.9.Hit ratios, Costs, and Delays forT = 9, 0.9 Queries per second, and Trace-driven
changes over 54 locations.

Policies Hit ratio Cost Delay
Simple lookup 0.12 16 3.2
Greedy age lookup 0.32 13 1.7
Greedy distance lookup 0.27 13 1.9
Median-of-3 lookup 0.20 15 2.3
Piggyback queries 0.12 16 2.9
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Now consider the case where delay is more important than value deviation in Equation

(5.2). For example, whenA= 0.9, Figure 5.71 shows that the cost and quality performance

of the greedy policies and the median-of-3 lookup policy is better than the performance of

not using a cache. Specifically, a cost savings of up to 4% is obtained with a simultaneous

improvement in quality of up to 20%. Figure 5.72 shows even greater cost savings and

quality improvements for trace-driven changes to the environment. This figure shows cost

savings of up to 33% and quality improvements of up to 40%.

The characteristic cost vs. delay figures for both sensor field models, Figure 5.73 and

Figure 5.74, are nearly linear and havex-axis values that are more dispersed than those

in the corresponding cost vs. quality graphs (Figures 5.71 and 5.72). However, the value

deviations introduced by our age-based policies make the differences in quality smaller

than the differences in delay. Thus, the quality provided by these policies is more clustered

toward the “All misses” points near the top of Figures 5.71 and 5.72 than the delays for

the “All misses” case in Figures 5.73 and 5.74. Figures 5.71 and 5.72 also both show

that the greedy policies provide the best performance in terms of both quality and cost.

However, the gains are more compelling when the underlying cache hit ratios are higher,

since higher cache hit ratios mean greater cost savings. Table 5.9 shows cache hit ratios

that range between 12% and 32% for our 54-node sensor network model. The relative cost

and quality gains for this network model are superior to those of the 1000-node network

model, for which cache hit ratios are between 2% and 8%. Table 5.8 shows the cache hit

ratios for our 1000-node sensor network model.

Thus far, we have seen that the presence of a cache provides greater performance bene-

fits when delay drives quality. Specifically whenA= 0.9, we have observed cost savings of

up to 33% and quality improvements of up to 40%. In contrast, Figures 5.67 and 5.69 make

a weaker case for using a cache when its hit ratio is quite low (32% or less for all of our

age-based policies, as shown in Table 5.8 and Table 5.9). Our results are also more com-

pelling for trace-driven changes. For example, Figure 5.68 shows that simple lookups or
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piggybacked queries can yield a performance gain in both cost and quality when compared

to the “all misses” policy.

In this section and the previous section, we studied the impact of manipulating the cache

hit ratio by varying the cache age threshold parameter,T:

• We achieve a significant cost savings (up to 95% in our configurations) by increasing

T, and thus increasing the cache hit ratio.

• We still achieve a small cost savings (from 2% to 33%) whenT is small, but greater

than zero.

• In both of these cases, and for both of our sensor field models, these cost savings

occur with a simultaneous quality improvement when delay is more important to

quality than value deviation. However, when value deviation is more important to

quality, we observe quality that is usually worse (by up to 50% in our configurations),

and sometimes better (by up to 5%).

5.8 Survey of Related Work

Trading communication cost for data quality has been investigated by others [101, 100,

102, 99, 136]. Work at Stanford [101, 100, 102, 99] and UIC [136] both explore this idea,

but in ways quite different from our research. The UIC work investigates the trade-off

in wireless sensor networks from a theoretical point of view. However, their proposed

algorithms focus on caching within the sensor field itself rather than at the sensor field

gateway. The Stanford work focuses on a complementary problem: Supporting precision

bounds on a set of queries over streamed data. These bounds are provided on a best-

effort basis, and their cost functions are too simple to translate their results to wireless

sensor networks. Specifically, their work assumes unit cost to deliver each data item to an

application.
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Data quality has many definitions in the UIC and Stanford work. These papers consider

four different methods for quantifying sensor data quality:

1. Change in value;

2. Rate of change in value;

3. Version of a data item; and

4. Rate of update of a data item.

We adopt the first of these alternatives and use the same term to describe the accuracy

component of quality, namely value deviation.

Work at Virginia [12] and work at Berkeley / Carnegie Mellon / Intel [38] has proposed

different distributed caching schemes for wireless and wired sensor networks, respectively.

However, these results consider only the benefits of caching sensor data without consider-

ing its cost.

From the work cited above, there are three important references that are related to this

thesis that are worth describing in detail:

• C. Olston, J. Jiang, and J. Widom.Adaptive Filters for Continuous Queries over

Distributed Data Streams[99];

• C. Olston and J. Widom.Best-Effort Cache Synchronization with Source Coopera-

tion [102]; and

• A. Deshpande, S. Nath, P. Gibbons, S. Seshan.Cache-and-Query for Wide Area

Sensor Databases[38].

We discuss these papers in this order.

Olston et al. [99],Adaptive Filters for Continuous Queries over Distributed Data Streams.

This paper presents an adaptive filtering algorithm where data sources periodically

make their associated filter less restrictive, making their bound on the source more pre-

cise. At the same time a central query processing engine selectively chooses sources that
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may use more restrictive filters, making their bound on the source less precise, without vio-

lating the precision bounds for any of the outstanding queries. The sources are assumed to

be sufficiently homogeneous that for the purposes of adaptation a single adjustment period

and a single shrink fraction work well for all sources.

The proposed algorithm was evaluated for a network monitoring application on a small

LAN (10 hosts). Communication was assumed to have uniform unit cost. The performance

metric of interest was communication cost per second of running the algorithm for a given

answer precision.

Interesting aspects of the results in this paper were:

• The adaptive filtering algorithm always outperforms uniform bound allocation in

the results shown. This performance difference is significant (50-90%) for multi-

ple queries and in wide-area environments.

• Uniform bound allocation always outperforms using no filtering.

• As query precision constraints become tighter (using filters that are less restrictive),

the behavior and cost of the adaptive filtering algorithm, uniform bound allocation,

and using no filtering converge.

• Finally, inconsistency can occur as source updates are delayed or lost en route to the

central query processing engine. This was investigated only for a single query in the

LAN environment. It was show that the data at the central query processing engine

was consistent 99.997% of the time.

Olston et al. [102],Best-Effort Cache Synchronization with Source Cooperation.

This paper presents an adaptive scheduling algorithm where data sources periodically

decrease the bandwidth used for refreshing a master cache. At the same time the cache se-

lectively chooses data sources that may use more bandwidth for refreshing the cache. Local

scheduling of refresh messages is implemented as a priority queue wherein the priority of
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refresh messages is a function of the divergence of the data source value from the cached

value, and a system-dependent weight (e.g., importance× popularity). The sources are

assumed to be sufficiently homogeneous that for the purposes of adaptation a single factor

for increasing the bandwidth and a single factor for decreasing the bandwidth work well

for all sources.

The proposed algorithm was evaluated for sources that increase or decrease in value by

one unit according to a Poisson process. Available bandwidth for refresh messages was ei-

ther fixed or varied according to a randomly selected sine wave. Message transmission was

assumed to consume a uniform unit of bandwidth. The performance metric of interest was

the divergence between the cache and the data sources (i.e., a measure of the cache consis-

tency). The results show that as the average theoretically attainable divergence increases

(due to low bandwidth and/or many rapidly diverging objects), the adaptive algorithm at-

tains divergence nearly as good as the ideal case (within 30%). In the less interesting case

when divergence is small, the magnitude of the divergence achieved by the proposed algo-

rithm and that of the idealized case is within a factor of four.

The adaptive algorithm was also evaluated in trace-driven simulation using real-world

data from 40 weather buoys deployed in January 2000 by the Pacific Marine Environmen-

tal Laboratory. When the available bandwidth was either very small or very large, the

adaptive algorithm closely matched the ideal case. At moderate bandwidths (10’s of pack-

ets/second), the adaptive algorithm yielded average divergence that was within a factor of

two of the ideal case.

Deshpande et al. [38],Cache-and-Query for Wide Area Sensor Databases.

The IrisNet system maintains the logical view of the data as a single XML document,

while physically the data is distributed across any number of host nodes. For scalability,

sensor data is stored close to the sensors, but can be cached elsewhere as dictated by the

queries. The contributions of this paper are:
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• It presents a scalable system for executing XPATH queries on wide-area sensor

databases. The system uses a logical hierarchy of sites dictated by the XML doc-

ument; these logical sites are mapped to a smaller collection of physical sites, as

dictated by the system administrator or the queries themselves.

• It proposes a technique for self-starting distributed queries, which jump directly to

the lowest common ancestor (LCA) of the query result, by using DNS site names

(made up of query node IDs) extracted from the query itself. DNS lookups are then

used to determine the IP addresses of the desired sites, and DNS entries are updated

when document nodes are remapped.

• It shows how general XPATH queries can be evaluated on a single XML document

when the document itself is fragmented across machines, and the fragmentation is

constantly changing. It also proposes a novel query-evaluate-gather (QEG) technique

for detecting (1) which data in the database fragment at a site is part of the query

result, and (2) how to gather the missing parts. Because XPATH is insufficiently

powerful, the authors actually use XSLT to query the database, evaluate what is there,

and send subqueries to gather the missing parts of the answer.

• It presents a scheme for caching query results at sites as dictated by the queries.

Owned data and cached data are stored in the same site database, with different tags,

unifying the query processing at a site.

• Finally, this paper presents experimental results demonstrating the effectiveness of

these techniques in dramatically increasing update and query throughputs and de-

creasing query response times in wide area sensor databases. The results show that

distributed querying (using DNS to self-start) can improve performance by up to a

factor of three over using centralized queries.
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5.9 Conclusions

We explored the benefits and costs of caching for sensor network-based applications in

this Chapter. In such systems, one or more driving applications retrieve sensor data that is

disseminated from sensor fields. Issues of scale arise from the need to satisfy a variable

and potentially large number of concurrent queries for sensor data.

Our work examined the cost and quality performance of several proposed approaches

to querying for, and then caching data in a sensor field data server. These approaches are

designed to be general since they make no assumptions about whether the higher layers in

a sensor network architecture use a structured or unstructured data model.

We showed that for some application quality requirements (i.e., when system delay

drives quality), policies that emulate cache hits by computing and returning approximate

values for sensor data yield a simultaneous quality improvement and cost savings. This is

because when system delay is sufficiently important, the benefit to both cost and quality

achieved by using approximate values outweighs the negative impact on quality due to the

approximation. In contrast, when accuracy (i.e., value deviation) drives quality, a linear

trade-off between cost and quality emerged:

• We obtained the best cost performance by implementing policies that approximate

sensor readings by using cached values from nearby locations.

• The best quality performance was achieved by policies that always query and cache

the sensor field location specified in the user query.

We introduced an analytic model for changing the sensor field data values that captures

temporal correlation, spatial correlation, and allows different rates at which the values can

change. We compared our results that used this correlated model for sensor data values

with results that used real-world trace data, namely light intensity readings from an Intel

Berkeley lab trace described in [37] via simulation.
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We identified a class of caching and lookup policies for which the sensor field query rate

is bounded when servicing an arbitrary workload of user queries for sensor data. This upper

bound is achieved by having multiple user queries share the cost of a sensor field query.

Furthermore, this bound is a simple function of the number of locations in the sensor field

and an age threshold parameter that is associated with our caching and lookup policies.

We also studied the performance impact of manipulating the sensor data cache hit ratio

by varying this cache age threshold parameter (T):

• We achieved a significant cost savings (up to 95% in our configurations) by increas-

ing T, and thus increasing the cache hit ratio.

• We still achieved a small cost savings (from 2% to 33%) whenT was small, but

greater than zero.

• WhenT was too small and value deviation was most important to quality, we ob-

served quality that was usually worse (by up to 50%), and sometimes better (by up

to 5%).

Finally, we showed that our results were robust with respect to the manner in which

the environment being monitored changed. Specifically, for our sensor network model

with correlated changes to the environment, we varied the rate at which the environment

changed by two orders of magnitude. When we used the real-world light intensity data, we

varied the rate at which the sensor field is queried, also by two orders of magnitude.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary of Scalable Networked Servers Research

As Internet technology continues to evolve, network-based services will expand in num-

ber and in functionality. For example, web content is increasingly being augmented with

more bandwidth-intensive audio and video. Similarly, distributed sensing applications are

becoming more data-intensive. For example, the current generation of real-time weather

data feeds (e.g., from NCAR) are improving by an order of magnitude in sampling fre-

quency and resolution. In combination, these factors will dramatically increase the per-

formance requirements for network-based content and data servers. This first part of this

thesis evaluates the suitability ofconnection-level parallelismfor supporting emerging ap-

plications that will run on these servers.

In Chapter 2 we described our own implementation of connection-level parallelism

(CLP), and experimentally determined how throughput scales with the number of pro-

cessors, and how throughput changes as the number of connections increases. We also

investigated three other issues:

• The effect of the granularity of parallelism on performance.

• The effect of the transport protocol on performance.

• The impact of processing packets in bursts.

We found that connection-level parallel protocol stacks scale well with the number of

processors for UDP and TCP, performing both send-side and receive-side communication.
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Furthermore, the throughput delivered is, for the most part, sustained as the number of

connections increases. We also show that for moderate to large numbers of connections,

the number of threads in the system and the number of connections assigned to each thread

are the key factors in determining performance on a multiprocessor.

Our results showed that thread per connection parallelism yields the best aggregate

throughput. However, thread per connection may not be feasible if the number of con-

nections exceeds the number of threads that can be reasonably supported by a particular

multiprocessor. In this case, the best throughput is obtained by using virtual processor per

connection and maximizing the number of threads in the system.

We also showed that if an application needs maximal throughput from a multiprocessor

protocol stack, amortizing per-packet costs over multiple packets is worthwhile.

In Chapter 3 we studied how aggregate throughput is distributed across connections

in our implementation of connection-level parallelism (CLP). We find that in many cases

throughput isnot distributed fairly among connections, or threads.

We quantified whether our protocol implementations were distributing aggregate through-

put fairly by measuring the throughput seen by each connection and thread and computing

percentiles of the throughputs, between the maximum and minimum values. We presented

results for both UDP and TCP, servicing both a moderate and large number of connections.

Our results show that matching the number of threads to the number of physical processors,

while scheduling connections assigned to each thread (or virtual processor) in a round-robin

manner, yields the best fairness behavior. However, an improvement in fairness may come

at the cost of aggregate throughput.

We also found that there can be significant differences in the per-connection (as well as

per-thread) throughput. We demonstrated that scheduling and memory reference behavior

both play a role in the unfair distribution of aggregate throughput. Furthermore, fairness

problems tend to increase as more threads are used in the protocol stack, and this increase

is due to greater differences in memory reference behavior seen by the threads.

137



In Chapter 4 we assessed the suitability of connection-level parallelism (CLP) for sup-

porting continuous media applications. In such applications, the server protocol stack is

one link in a chain of subsystems which must provide throughput guarantees to connec-

tions. We consider two types of throughput guarantees. The first is for applications where

the playout rate is required to exactly match an original fixed recording rate (i.e., CBR ap-

plications). In this case, the protocol stack and operating system (as well as other system

components) should provide service where throughput delivered to connections is constant

and guaranteed. We refer to this service class as service with hard throughput guaran-

tees. The second is for applications that can adjust their playout rate as they detect that

the available bandwidth being delivered to connections changes. In this case the protocol

stack and operating system need to distribute the available bandwidth equitably among all

connections. We refer to this service class as service with soft throughput guarantees.

We presented results for a new technique, calledthroughput-based scheduling, that

provides a mechanism whereby threads monitor and report their per-connection throughput

to the scheduler. To support soft throughput guarantees, the scheduler balances load by

reallocating work (in this case connections) among threads. We refer to this technique

assoft throughput-based scheduling. To support hard throughput guarantees, the scheduler

schedules threads according to their “utilization” (i.e., how much of their current capacity is

consumed by the throughput they have been assigned to deliver). We refer to this technique

ashard throughput-based scheduling.

Using UDP as the transport protocol, we showed that throughput-based scheduling is

suitable for supporting continuous media applications. Soft throughput-based scheduling

performed best with fewer threads in the system and without competing scheduling mech-

anisms (i.e., IRIX’s cache affinity-based scheduling). Hard throughput-based scheduling

also performed best with fewer threads performing protocol processing. Furthermore, when

the number of threads used is the same as the number of processors, the throughputs deliv-

ered are accurate over both short (i.e., down to 100 milliseconds) and long time scales.
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6.2 Summary of Wireless Sensor Networks Research

Over the next several years wireless sensor networks will enable many new data-intensive

sensing applications, ranging from environmental and infrastructure monitoring to com-

mercial and industrial sensing. Networks of small, possibly microscopic sensors embedded

in the fabric of our surroundings: in buildings, warehouses, and machinery, and even on

people, will drastically enhance our ability to monitor and control our physical world. How-

ever, realization of wireless sensor networks requires practical satisfaction of a number of

real-world constraints introduced by factors such as scalability, reliability, cost, hardware,

topology change, environment, and perhaps most importantly, power consumption. Ex-

amples of wireless embedded sensor network-based applications include urban structure

monitoring, contaminant transport monitoring, habitat monitoring, and military surveil-

lance.

In the second part of this thesis, we explored the benefits and costs of caching for sen-

sor network-based applications. In such systems, one or more driving applications retrieve

sensor data that is disseminated from sensor fields. In Section 1.3.1, we saw how caching

data in the sensor field gateway has the potential to help application performance. In Sec-

tions 5.1 through 5.3, we formulated models for a sensor network, its sensor fields, and its

application workload. These models introduce an analytic model for changing the sensor

field data values that captures temporal correlation, spatial correlation, and allows different

rates at which the sensor field values can change. We compared our results that use this

correlated model for sensor readings with results that use real-world trace data from the

Intel Berkeley Research Lab via simulation.

Sections 5.4 through 5.7 examined how well different data caching approaches perform

in terms of bothcostandquality. We presented results for seven proposed data caching

approaches:

• All hits;

• All misses;
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• Simple lookups;

• Piggybacked queries;

• Greedy age lookups;

• Greedy distance lookups; and

• Median-of-3 lookups.

These approaches are designed to be general since they make no assumptions about whether

the higher layers in a sensor network architecture use a structured or unstructured data

model.

We demonstrated that different approaches should be used depending on the application

requirements and the characteristics of the environment and sensor network. The results in

Sections 5.4 through 5.7 can be summarized as follows:

• Necessary conditions to avoid a cost vs. quality trade-off.We measured the benefit

and cost of our seven proposed caching and lookup policies as a function of differ-

ent application quality requirements. We showed that for some quality requirements

(i.e., whensystem delaydrives quality), policies that prevent cache misses by com-

puting and returning approximate values for sensor data yield a simultaneous quality

improvement and cost savings. This win-win is because when system delay is suffi-

ciently important, the benefit to both cost and quality achieved by using approximate

values outweighs the negative impact on quality due to the approximation. In con-

trast, when accuracy (i.e.,value deviation) drives quality, a trade-off between cost

and quality emerged.

• Form and magnitude of the cost vs. quality trade-off.Five of our caching and lookup

policies aged and then deleted cache entries uniformly based on an age threshold

parameter,T. We observed that in many system configurations these five policies

exposed a linear cost vs. quality trade-off:
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– We obtained the best cost performance by implementing policies that approxi-

mate sensor readings by using cached values from nearby locations.

– The best quality performance was achieved by policies that always query and

cache the sensor field location specified in the user query.

When this linear trade-off was present, we found that the underlying cost vs. value

deviation and/or cost vs. system delay functions were also linear.

• Bounded cost for specific caching and lookup policies.For applications that require

bounded resource consumption, we identified a class of caching and lookup policies

for which the sensor field query rate is bounded when servicing an arbitrary workload

of user queries for sensor data. This upper bound is achieved by having multiple user

queries share the cost of a sensor field query. Furthermore, this bound is a simple

function of the number of locations in the sensor field andT.

• Impact of the manner in which the environment changes on cost and quality perfor-

mance.For our sensor network model with correlated changes to the environment,

we varied the rate at which the environment changed by two orders of magnitude.

When we used the real-world trace data, we varied the rate at which the sensor field

was queried, also by two orders of magnitude. For both methods for changing the en-

vironment, our results showed that the magnitude of the cost and quality performance

changed, however, the trends for the most part remained the same. Specifically, rel-

ative performance differences between policies varied within our results, however,

the policies that provided the best cost performance (i.e., the greedy policies) re-

mained the same. Similarly, the policies that provided the best (or near-best) quality

performance were the same, namely simple lookups and piggybacked queries.

• Effect of changing the age threshold parameter for cache entries on performance.

We varied the cache entry age threshold (T) as a way to manipulate the cache hit

ratio:
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– We achieved a significant cost savings (up to 95% in our configurations) by

increasingT, and thus increasing the cache hit ratio.

– We still achieved a small cost savings (from 2% to 33%) whenT was small, but

greater than zero.

We saw that for high cache hit ratios (i.e., 88% and higher) the performance of all

of our five age-based policies converged toward the “All hits” baseline performance.

In contrast, for low cache hit rates (32% and lower) the performance of some (but

not all) of our policies was clustered near the (cost, quality) point associated with the

“All misses” baseline. When this was true, we also observed an interesting negative

result: Unless cost is much more important than quality, some of the caching and

lookup policies exhibit worse performance than having all misses. However, a cache

with a positive hit ratio always provides some cost savings.

6.3 Suggestions for Future Work

There are many interesting directions for future work that would build on the foundation

laid in this thesis.

With respect to our networked servers contributions, it would be interesting to inves-

tigate additional support for continuous media. One direction to proceed would be to

investigate techniques for supporting heterogeneous qualities of service (recall that our

throughput-based scheduling results focused on connections with homogeneous require-

ments). Furthermore, it would be a challenge to integrate a policy that provides throughput

guarantees with another policy for performing call admission. This line of research would

be a natural extension to our results for hard throughput-based scheduling, but could also

complement soft throughput-based scheduling.

One advantage of connection-level parallelism not highlighted in this thesis is its porta-

bility and applicability to other architectures. This is in contrast to other forms of paral-

lelism for network protocols that require more synchronization to process each packet. An-
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other direction for future work therefore would be to study the research issues in evaluating

connection-level parallelism on platforms such as distributed shared-memory machines and

clusters of workstations (or PC’s).

With respect to our sensor networks research, it would be interesting to explore alter-

native models for the query workload and how the environment changes. For a large set

of end users, it is reasonable to assume that the workload arrival process will be a com-

bination of a deterministic process and a Poisson process. This assumption, however, is

context dependent. In a scenario when one or more significant events are occurring, this

workload model would likely be inadequate. It would be important to experiment with

models for both the environment and the workload that capture the dynamic behavior of a

sensor network in the presence of a significant event (or events).

It would also be interesting to explore techniques for distributed caching within the

sensor field itself. These techniques could work in cooperation with (or independently

from) the caching approaches described in this thesis. Here is a list of possible issues that

would need to be addressed in distributed caching for sensor networks:

• When to store data in a received message;

• Which data to store once it is extracted from a received message and aggregated with

other data that has been received or sent;

• When to relay, relay and update, relay and piggyback, or just discard a received

message;

• When to send an synchronous or asynchronous message; and

• To which node(s) or location(s) should an outbound message be addressed.

Given the dependencies in this list of possible issues, it is likely that a distributed caching

approach would need to be aware of the routing policy for the sensor field, and the trans-

mission scheduling policy at sensor nodes.
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