
Reasoning for Intelligent System-User Interactions with Enterprise Resource
Planning Systems∗

Wendy Lucas and Tamara Babaian
Computer Information Systems Department

Bentley University
{wlucas, tbabaian}@bentley.edu

Abstract
Enterprise Resource Planning (ERP) systems are
recognized as having unintuitive interfaces and be-
ing difficult to use. At least part of the reason for
these problems comes from the complexity of the
processes they support and the need for generic
interfaces that can be adapted for use by a wide
range of industries. We examine here the applica-
tion of usage logs and AI planning to strengthen the
ability of the system to act as a collaborative part-
ner providing individualized support to its users,
particularly in resolving errors. This work is part
of a larger project investigating if the usability of
ERP systems can be improved by adopting human-
computer collaboration as a paradigm for system
design.

1 Introduction
A system’s ability to learn and reason about its users, the
tasks they perform, and their system-related goals is essen-
tial for optimizing human-computer interactions. While it
is generally difficult to effectively and efficiently enable this
ability, introducing learning and reasoning to enterprise-wide
systems presents its own unique challenges. These systems
implement business processes that involve a vast number of
users working on a multitude of interrelated tasks that can
span extended time periods. Despite user training and on-
going usage, the system’s logic remains in large part opaque
to even the most experienced users due to the broad scope
and inherent complexity of these processes. Even experi-
enced users are typically unaware of the relationships and
interdependencies between tasks and the semantics of indi-
vidual input fields, forms, and interface options. This signifi-
cantly impedes the ability of all users to make optimal use of
the system, especially when it comes to making sense of and
resolving errors. Our focus here is on applying learning and
reasoning to support system-user interaction and, in particu-
lar, error handling.

∗This material is based in part upon work supported by the Na-
tional Science Foundation under Grant No. 0819333. Any opinions,
findings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

The work we describe here is part of our on-going
project to study if the usability of Enterprise Resource
Planning (ERP) systems can be improved by adopting
human-computer collaboration [Terveen, 1995; Grosz, 2005;
Shieber, 1996] as a paradigm for system design. This per-
spective shifts the view of the system from being a mere
repository of data and process interfaces towards being more
of a knowledgeable partner, thus achieving a greater degree
of collaboration between the system and its users. To provide
stronger collaborative support, the system must be aware of
the users and their actions, the tasks and processes, and its
own capabilities so that it can reason about itself as well as
its users. Our approach is to embed this knowledge into the
system via a model that captures the existing structure and se-
mantic relationships between interface components and usage
history. Some initial results of this work have been reported
in [Babaian et al., 2007].

Existing studies of enterprise system users have shown the
benefits of providing them with prerecorded recipes for dif-
ferent tasks (e.g. [Leshed et al., 2008]). Such recordings can
be created manually (e.g. [Eisenstein and Rich, 2002]) or in
an automated fashion (e.g. [Little et al., 2007]). Our aim
is to provide recipe-based guidance for users within a single
system. As we propose in this paper, some of these recipes
can be derived by mining usage logs [Linton and Schaefer,
2000] while others can be created dynamically by the system
by means of automated planning [Babaian et al., 2002]. Us-
age log mining will leverage data on frequently performed,
ordinary practices; planning will create recipes to support in-
frequent situations by employing explicit reasoning.

Usage data can be used for a variety of purposes, including
workflow mining, estimating a user’s experience level, and
usability assessments of various system features. By embed-
ding an automated usage logging component into an ERP sys-
tem, that data can also be used for dynamically adjusting the
interface to better meet the needs of the individual users. The
model we employ links usage log data to particular users, in-
terface components, tasks, and processes. This makes it pos-
sible for users to specify in a transparent way which usage
histories are relevant for them.

Automated planning can be used when usage histories are
either not available or not easily identifiable, as, for example,
in error situations. The system can provide active support to
its users by dynamically identifying a plan to invoke particu-



• Domain data stores the enterprise data routinely main-
tained by existing enterprise systems.
• User represents the user information.
• UI Concept includes entities representing the user inter-

face components, their grouping on interface pages, and
their relationships to the domain data.
• Task Concept represents tasks as named collections of

interface pages.
• Business Process represents the system-defined compo-

sition of tasks into business processes.
• Logging contains the entities that record the dynamically

collected data, capturing all occurring system-user in-
teractions on the key-press (or mouse click) level along
with the instances of enacted task interfaces. The us-
age logs specify which tasks and input controls were en-
acted and when, what data was entered, and which user
entered it.

Figure 1: Components of the system data model used to sup-
port usage logging and subsequent analysis of logs.

lar interface components that are necessary for the diagnosis
and/or resolution of an error. Planning can also leverage the
information from the usage logs to provide contextual and
historical information.

The next section of this paper describes usage logging and
its application to supporting users in error situations and basic
system usage. Section 3 presents examples of how planning
can be applied in the context of automated preference elicita-
tion and error handling. We conclude with a discussion of the
benefits and challenges inherent to this work.

2 Usage logs
Usage logs provide fodder for analyzing user performance
[John and Kieras, 1996], visualizing usage data [Al-Qaimar
and McRostie, 2006], and workflow discovery [Shen et al.,
2009; Greco et al., 2005], to name but a few applications.
The granularity of the data that is captured determines how
useful the logs can be for each of these purposes. As Ivory
and Hearst (2001) point out, dealing with click-level inter-
actions makes it difficult to relate the captured events with
particular tasks and parts of an interface. Our approach over-
comes this challenge by using our model of processes-tasks-
interfaces-users-usage as a framework through which data
can be viewed (see Figure 1). This model allows the system
to analyze usage data at various levels of granularity: from a
single user to a user group, from a single button in an inter-
face to commonly accessed sequences of tasks or error-prone
parts of a process.

Using this embedded model strengthens human-computer
interaction by enabling the computer to reason about the con-
text of each interaction. The system can relate the current
interaction to prior relevant usage history. Relevance can be
identified by the system, potentially with the help of the user,
based on the recorded contextual information about tasks,
users, and processes.

One way in which we have applied usage logs from our
model is for automatically deriving usability data [Babaian et
al., 2007]. Measurements include the time it takes to com-
plete a task, a series of tasks, or a business process; the time
spent on a session and the number of tasks performed within
that session; the sequence of actions the user follows for com-
pleting a task; and the number of corrections at the keystroke
level a user makes when entering a data value.

While ERP systems are designed with a predetermined
workflow in mind, actual usage often varies from the pre-
scribed process. Knowledge gleaned from prior use of sys-
tem interfaces about the order in which users typically per-
form tasks associated with a process, the number of times
they have performed those tasks, which fields they fill in, and
the data choices for those fields can also be used to guide and
support the user, as described next.

2.1 Usage Logs as a Repository of Organizational
and Individual Practices

ERP systems are designed to satisfy the needs of every kind
of organization. As a result, the default interfaces are very
generic: they present a multitude of forms, fields, and selec-
tion options within every page or screen; search interfaces for
selecting possible values for input fields provide users with an
overwhelming number of choices. A large proportion of input
fields are in fact optional, but in the initial stages of system
use, users are stymied trying to figure out which fields are re-
quired and which are not (based on their organization’s prac-
tices). While ERP systems do typically include customization
options for form design that allow the elimination of unused
fields and the streamlining of interfaces, this customization
is perceived as costly, and certainly too costly to be done for
each user. Users also have customization options that they
can set themselves, but even experienced users have trouble
finding these options, let alone setting them. Thus, providing
automated usage-based mechanisms for identifying required
fields and reconstructing completed processes are promising
opportunities for providing better support to users.

In field studies of ERP system users [Topi et al., 2005],
subjects noted that the sheer number of fields in each form is
rather intimidating, especially for inexperienced users. Even
those users who described themselves as “living” in the sys-
tem admitted that, when performing tasks that are done on an
infrequent basis, such as yearly reports, they typically need
to consult in-house documentation detailing the sequence of
interfaces and the particular fields that need to be filled in.

Data from the usage log can be used to remind a user about
how a process was completed any of the prior times that she
worked on it. It is possible to dynamically reconstruct the
procedure that was followed (i.e., the recipe), the values that
were entered, and the output that was produced. This recon-
structed process can be “replayed” for the user.

The system can also determine how frequently the user ac-
cesses a particular interface and adjust the level of instruc-
tional/error support to the appropriate level. While this type
of assessment could not be accomplished quickly with typical
click-level data, ERP systems require their users to identify
the tasks on which they are working via a selection mech-
anism; capturing this information with our model therefore



makes task recognition trivial.
For a new user in particular, it is helpful to see the fields

that were filled in by others working on the same tasks. The
usage logs can easily provide this information: those fields
that have been used in the past can be highlighted and even
color-coded based on the amount of usage. Allowing the
user to control the list of individuals whose usage histories
the mining should be based on personalizes the results to the
user’s own role and associations in the organization. This ap-
proach allows the system and the user to each contribute to
this collaborative effort in ways most reflective of their re-
spective knowledge.

3 Using AI planning to enhance interactions

Automated planning has been successfully used to embed
reasoning about actions (e.g. [Babaian et al., 2002; Barish et
al., 2000]), enabling the system’s robust and autonomous op-
eration in support of its users’ goals. An example of this is the
Writer’s Aid system [Babaian et al., 2002], which works in
parallel with the user of a text editor by identifying and down-
loading bibliographic records and citations matching user-
specified keywords. The use of reasoning and planning in
Writer’s Aid is isolated to just one type of activity: biblio-
graphic search. A partial order planning algorithm is used,
which interleaves planning with execution of partial plans for
information gathering from the bibliographic data reposito-
ries and, sometimes, from the users themselves.

In this project, we are relying on the same planning tech-
niques that were employed in Writer’s Aid. However, in the
ERP domain, we aim to expand the use of automated planning
to reasoning about a much broader variety of the system’s in-
terface functions. By modeling various interface components
as actions with preconditions and effects, we give the system
the ability to reason about its own actions. This enables the
planning capability to be used for enhancing and directing
system-user interactions in a variety of ways, including auto-
mated preference elicitation and support in error situations.

The PSIPLAN formalism for planning with correct but in-
complete information about the world, used in Writer’s Aid,
distinguishes sensing actions (i.e., those that result in previ-
ously unknown information being added to the state of knowl-
edge) from domain actions (i.e., those that alter the world
state). The ability of the planner to function with only in-
complete information is essential because, in order to provide
effective support with minimal overhead to the user, the plan-
ner should be able to operate with little to no initial informa-
tion.

In the ERP-interface domain described here, the initial
state of knowledge about the world may contain little or no
knowledge at all. Information is collected as needed via ex-
ecution of sensing actions: by querying the user or the usage
logs. Information obtained from such querying is then added
to the state of knowledge and recorded for future use. The
planner’s ability to avoid redundancy in sensing is also es-
sential when the sensing actions involve querying the user to
avoid repetitive questioning.

3.1 Automated preference elicitation
As described in [Babaian, 2002], by modeling system actions
with preconditions requiring knowledge of user preferences,
we can implement preference elicitation as a means for satis-
fying those preconditions.

For example, consider one of the real life issues brought to
our attention by an ERP system user. He pointed out that the
list of selections for country codes always includes a com-
plete list of all countries, even though only five are relevant
for his company. While limiting the list is definitely within
the scope of customizable options, this was not something
that the IT department had chosen to do. Given the tens
of thousands of database tables supplying generic data for
use by any company, this type of customization is just too
costly. Automated preference elicitation is ideal for use in
these cases.

Continuing with our example, suppose that the interface
function of displaying a drop-down box with country codes
was tagged with a precondition of knowing the subset of
codes that a particular user had chosen to be displayed:

g = ∀x .KW (DisplayCountry(x , ?user))

where KW (P) denotes knowing whether P is true or false.
Variables identified with a ? are assumed to be existentially
quantified and instantiated at the time of execution. Thus, the
precondition above represents knowing whether x is a coun-
try code preferred by the specified user, for all values of x .
(Here and throughout, for the sake of brevity, we outline the
ideas and do not present the details of the planning represen-
tations and reasoning algorithms. For more detailed descrip-
tions, see [Babaian et al., 2002].)

Upon the user invoking the drop-down box for the country
code, the reasoner establishes whether the precondition g is
satisfied, given it’s state of knowledge. If the precondition is
not satisfied, the reasoner will search for a plan to achieve it.
Below are some plausible choices, all of which achieve goal g
and can be presented to the user (we assume that the interface
and action descriptions presented below are available to the
planner):
• An interface through which the user can specify those

country codes to be displayed whenever a country code
is requested.

Action : USelectCountries(?user)
Precondition : none
Effect :∀x .KW (DisplayCountry(x , ?user))

• An action that consists of adopting the list of preferred
countries that have been selected by some other user.
This action has a precondition that the preferred coun-
tries of the user-source for this information is known.

Action :UAdoptOthersPref(?user, ?source)
Precondition :∀x .KW (DisplayCountry(x , ?source))
Effect :∀x .KW (DisplayCountry(x , ?user))

• A two-action sequence that utilizes the usage logs for
finding those country codes that this particular user has
chosen before (action UsageLogCountries(?user)) and



asking if he would like that set of countries to be dis-
played (UConfirmCountries(?user)).

Action :UsageLogCountries(?user)
Precondition :none
Effect :∀x .KW (EnterCountry(x , ?user))

Action :UConfirmCountries(?user)
Precondition :∀x .KW (EnterCountry(x , ?user))
Effect :∀x .KW (DisplayCountry(x , ?user))

An alternative to the above would be the commonly used
adaptation of basing the content of the drop-down box on the
codes selected most recently by the user. The planning-based
mechanism is more explicit and, therefore, more transparent
to the user. Although it requires the user’s direct involve-
ment with the specification, such involvement, when occur-
ring within the context of a relevant task, is more likely to
lead to a positive outcome.

3.2 Support in error situations
ERP systems offer limited help to users in error situations,
with generic error messages providing little if any informa-
tion on why a value entered by the user is incorrect within
the context of the current interaction. A system that can rea-
son about its own actions, including those actions that require
user input, can create a plan or plans for proactively dealing
with potential error situations.

Consider the task of entering line items into a purchase req-
uisition form. For simplification purposes, let’s assume that
each line in the form specifies the material to be purchased,
the quantity, and the plant for which it is being procured. Be-
fore a line item can be recorded in the database, it must pass
a validation condition that can be formulated as a conjunction
of the following propositions, denoted by G :

InputValue(MaterialField , ?x ),
InputValue(PlantField , ?y),
Material(?x ), Plant(?y), PlantUseMaterial(?y , ?x ).

InputValue(?f , ?v) designates that input field ?f contains
value ?v , Material(?x ) designates that ?x is a valid mate-
rial code, Plant(?y) denotes ?y is a valid plant code, and
PlantUseMaterial(?y , ?x ) reflects that material ?x is used
by plant ?y .

The first two conditions can be verified by inspecting the
input form, while the last three can be verified by checking
the appropriate database tables.

Suppose the user has entered the code 55 into the material
field and PL1 into the plant field, thus binding ?x to 55 and
?y to PL1 . Suppose further that material code 55 does not
match any records in the material master list. There are two
possible explanations for this input: either this is a case of
user error, or 55 is a new code for a new part that is not yet in
the master list. The reasoning engine establishes that the two
propositions of the above goal G that are left unsatisfied are
Material(55 ) and PlantUseMaterial(PL1 , 55 ). In support
of goal G, the planner identifies the following sequences of
actions and offers them to the user, invoking the appropriate
interfaces in response to the user’s selection.

1. UAddMaterial(55), AddPlantUseMaterial(PL1, 55) - A
two-action plan in which the user enters a new ma-
terial record under code 55 and the system then (au-
tonomously or with the help of the user) specifies plant
PL1 as using material number 55. We do not present
the detailed descriptions of preconditions and effects of
these actions here, but note that the combined effect
of this plan includes both propositions Material(55 )
and PlantUseMaterial(PL1 , 55 ) being true. Thus, this
plan will render the goal satisfied. Note, however, that
this course of action is only appropriate if the user did
indeed intend to use a new material that had not yet been
added to the master list.

2. UPickMaterialForPlant(PL1, MaterialField) - An ac-
tion of displaying a selection of all possible mate-
rial codes identified as being used by plant PL1, let-
ting the user select one such value (identified here
as ?z ), and transferring the selected value into the
MaterialField input field. This action will have the
effect of Material(?z ), PlantUseMaterial(PL1 , ?z ),
and InputValue(MaterialField , ?z ) where the value of
?z will be identified at runtime. This plan, if executed,
will provably establish the required goal.

3. UPickMaterial(MaterialField) - An action of dis-
playing a selection of all possible material codes
and their descriptions in a dialog box, letting the
user select one of them, and transferring the se-
lected value into the MaterialField input field. This
action will have the effect of Material(?z ) and
InputValue(MaterialField , ?z ), where the value of ?z
will be identified at runtime. This plan does not prov-
ably establish PlantUseMaterial(PL1 , ?x ), but it does
not guarantee its negation either, so it can potentially
achieve the goal. We call such plans hypothetical.

4. Lastly, the plan that describes the typical behavior of
existing systems is UEdit(MaterialField), which is an-
other hypothetical plan that involves the user editing the
value of the MaterialField . This potentially achieves
Material(?z ) and InputValue(MaterialField , ?z ).

Of the above plans, only 1 and 2 provably achieve the goal.
The other two plans may or may not lead to goal achievement,
so may cause replanning to occur. Taking a closer look, we
note that only plan 1 does not require the user to change the
value entered for the material code. However, it is more likely
that the user made a mistake entering that code and would
be better off pursuing plans 2-4. Rank-ordering the possible
plans is a challenge, particularly in cases with many alterna-
tives, and different ordering criteria need to be investigated.

4 Discussion
We have presented an approach to enhancing system-user in-
teractions in ERP systems that is based on usage logs and
automated planning. In choosing these methods, we aim to
address the following overarching concerns regarding adding
intelligence to interactions:

1. The unobtrusive nature of these enhancements and the
associated learning. Usage logs are collected without



any overhead on the user’s part. The structured nature
of ERP interfaces presents the advantage of being able
to easily identify the users and tasks involved in system-
user interactions. This data can be leveraged for a variety
purposes.
Furthermore, customization is automatically triggered
within the context of the task being performed. That
customization can draw on usage data from one user or
a group of users.

2. The accuracy of the system’s reasoning and its trans-
parency to the user.
Usage histories, actions, and plans are concepts that hu-
mans employ naturally. Thus, system enhancements that
are based on the use of these tools can be more easily
explained and controlled by the user than more obscure
learning methodologies.
In order to earn the user’s trust, the methods that em-
ploy intelligence should provide effective assistance,
which requires precision in reasoning and the wise use
of the system’s and the user’s resources. The planning
algorithm should be sound, reasonably complete, and
non-redundant, especially when it comes to informa-
tion gathering, in order to competently reason about the
user’s preferences, usage history, and solutions to error
situations. PSIPLAN has these characteristics.

We have developed an experimental prototype that incor-
porates our data model for usage logging. This prototype im-
plements an interface for the purchase requisition process and
has been used for investigating how collaborative principles
can be applied to ERP interface design. We are in the process
of embedding the planner and the support mechanisms exam-
ined in this paper for resolving error situations and providing
more guidance to users.

One of the challenges to this work is scalability, which is
a challenge to both usage-log-based reasoning and planning
with large action sets. However, both the data and action sets
can be partitioned. For example, smaller subsets can be based
on user roles or groups of related tasks.

While our prototype is useful for experimental studies of
our design interventions, it can only be used as a proof-of-
concept to a limited extent. We cannot replicate the scope and
complexity of ERP systems, which arise largely from the vast
number of processes and users being supported. To truly test
the impact of our recommended approaches would require
implementation at the system level.

References
[Al-Qaimar and McRostie, 2006] Ghassan Al-Qaimar and

Darren McRostie. Evaluating user performance using
KALDI: A computer-aided usability engineering tool. In
Proceedings of the IASTED Conf. on Software Engineer-
ing, pages 242–251, 2006.

[Babaian et al., 2002] Tamara Babaian, Barbara J. Grosz,
and Stuart M. Shieber. A writer’s collaborative assistant.
In Proceedings of Intelligent User Interfaces Conference
(IUI-02), pages 7–14. ACM Press, January 2002.

[Babaian et al., 2007] Tamara Babaian, Wendy T. Lucas, and
Heikki Topi. A data-driven design for deriving usability
metrics. In ICSOFT (ISDM/EHST/DC), pages 154–159,
2007.

[Babaian, 2002] T. Babaian. Learning user preferences by
satisfying knowledge goals. In Personalized Agents. Pa-
pers from 2002 AAAI Fall Symposium, pages 1–5, North
Falmouth MA, November 2002. AAAI Press.

[Barish et al., 2000] Greg Barish, Craig A. Knoblock, Yi-
Shin Chen, Steven Minton, Andrew Philpot, and Cyrus
Shahabi. The theaterloc virtual application. In AAAI/IAAI,
pages 980–987, 2000.

[Eisenstein and Rich, 2002] Jacob Eisenstein and Charles
Rich. Agents and guis from task models. In Proceedings
of Intelligent User Interfaces Conference (IUI-02), pages
47–54, 2002.

[Greco et al., 2005] Gianluigi Greco, Antonella Guzzo,
Giuseppe Manco, and Domenico Saccà. Mining and rea-
soning on workflows. IEEE Trans. Knowl. Data Eng.,
17(4):519–534, 2005.

[Grosz, 2005] B. G. Grosz. Beyond mice and menus.
Proceedings of the American Philosophical Society,
149(4):529–543, December 2005.

[Ivory and Hearst, 2001] Melody Y. Ivory and Marti A
Hearst. The state of the art in automating usability evalu-
ation of user interfaces. ACM Comput. Surv., 33(4):470–
516, 2001.

[John and Kieras, 1996] Bonnie E. John and David E.
Kieras. The goms family of user interface analysis tech-
niques: comparison and contrast. ACM Trans. Comput.-
Hum. Interact., 3(4):320–351, 1996.

[Leshed et al., 2008] Gilly Leshed, Eben M. Haber, Tara
Matthews, and Tessa Lau. Coscripter: automating & shar-
ing how-to knowledge in the enterprise. In CHI ’08: Pro-
ceeding of the twenty-sixth annual SIGCHI conference on
Human factors in computing systems, pages 1719–1728,
New York, NY, USA, 2008. ACM.

[Linton and Schaefer, 2000] Frank Linton and Hans-Peter
Schaefer. Recommender systems for learning: Building
user and expert models through long-term observation of
application use. User Modeling and User-Adapted Inter-
action, 10(2-3):181–208, 2000.

[Little et al., 2007] Greg Little, Tessa A. Lau, Allen Cypher,
James Lin, Eben M. Haber, and Eser Kandogan. Koala:
capture, share, automate, personalize business processes
on the web. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
943–946, New York, NY, USA, 2007. ACM.

[Shen et al., 2009] Jianqiang Shen, Erin Fitzhenry, and
Thomas G. Dietterich. Discovering frequent work proce-
dures from resource connections. In IUI, pages 277–286,
2009.

[Shieber, 1996] Stuart Shieber. A call for
collaborative interfaces. ACM Comput-
ing Surveys, 28A (electronic) Available at



http://www.acm.org/pubs/citations/journals/surveys/1996-
28-4es/a143-shieber/, 1996.

[Terveen, 1995] Loren G. Terveen. Overview of human-
computer collaboration. Knowl.-Based Syst., 8(2-3):67–
81, 1995.

[Topi et al., 2005] Heikki Topi, Wendy T. Lucas, and Tamara
Babaian. Identifying usability issues with an erp imple-
mentation. In ICEIS, pages 128–133, 2005.


