Usability through System-User Collaboration*
Deriving Design Principles for Greater ERP Usability

Tamara Babaian, Wendy Lucas, Jennifer Xu, and Heikki Topi

Bentley University, Waltham, MA 02452, USA
{tbabaian,wlucas, jxu, htopi}@bentley.edu

Abstract. Enterprise Resource Planning (ERP) systems have become
essential in industry, yet the potential value created through system use
can be illusive due to poor usability. Extensive interviews with users re-
vealed that the underlying complexity of these systems manifests itself
in unintuitive interfaces that are challenging to use. Given the lack of
progress made with traditional design approaches, we propose a differ-
ent tactic based on a system-user collaborative approach. This entails
that the system acts as a collaborative partner by sharing knowledge,
providing task-specific support, and adapting to user behaviors. Based
on this collaborative view, we derive a set of principles for guiding the
design of ERP systems and provide concrete examples demonstrating (1)
how a lack of collaborativeness contributes to various usability problems,
and (2) how our proposed design principles can be used to enhance the
collaborativeness and, hence, the usability of ERP systems.

1 Introduction and Motivation

Enterprise Resource Planning (ERP) systems are widely employed in industry
to integrate various business processes. While this integration has the potential
to provide tremendous operational value, using these systems can be a challenge
for novices and even experienced users. ERP interfaces are typically unintuitive,
presenting an abundance of information reflecting the underlying complexity of
the processes around which they are built. The poor usability of these systems
has been noted in industry reports [13,14] and field studies on usage [15, 25, 7].

The lack of progress in addressing the usability of ERP systems has motivated
our interest in this topic. The prevailing theme in user interface design is the
human-centered paradigm, with its emphasis on knowing the user. While user-
based methods work well for uncovering usability problems [8], they typically
focus on a narrow scope of specific features of the existing implementation. This
tends to lead to localized fixes rather than system-wide alterations of the design
[19]. This is particularly problematic for ERP systems, whose broad scope and

* This material is based in part upon work supported by the National Science Founda-
tion under Grant No. 0819333. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

integrated functionality require the use of multiple system features by multiple
users for achieving comprehensive goals.

We propose that viewing system-user interactions through a “collaboration
lens” affords a novel perspective that is advantageous for improving usability.
The human-computer collaboration paradigm specifies that the system must act
as a partner to its users by supporting them in the increasingly complex envi-
ronments of modern applications [11]. This changes the dynamic from the user
being the only one with responsibilities and knowledge about the process to one
in which the system is called upon to do its part. Note that this approach is
different from Computer-Supported Cooperative Work (CSCW), which is con-
cerned with computing technology that supports human collaboration.

The work presented here is part of a multi-method research project for ad-
dressing ERP system usability that uses collaboration theory as a unifying frame-
work. Components of this project include conducting field studies for identifying
usability issues, modeling usability based on collaboration theory [7], developing
software artifacts for addressing usability limitations identified in field studies [2],
and designing an infrastructure that supports input logging for use in evaluating
proposed design interventions [1].

In this paper, we make the following contributions:

— demonstrate how to use the theory of collaboration to derive novel design
principles for improving the usability of enterprise systems,

— highlight usability problems in ERP systems based on findings from our
interviews and observations in the field, and

— link the collaborative properties of a system to usability using empirical data
and theory.

The next section of this paper describes our theoretical framework and related
work. We then examine the link between usability and collaboration as revealed
by concrete examples from a field study of ERP users at three organizations.
Next, we derive a set of design principles based on characteristic properties
of ERP systems and illustrate how they can be applied for achieving greater
usability. We conclude with a discussion and directions for future work.

2 Theoretical Framework and Related Work

2.1 Human-Computer Collaboration

The collaboration paradigm of human-computer interaction (HCI) [24] views
the interaction between a system and its user as a process in which they work
together to achieve shared goals. There are various philosophical accounts [23,
4] and computational frameworks (e.g. [12,6,17]) of collaboration involving hu-
mans and/or computer agents. Terveen’s review article [24] summarizes several
different approaches to modeling collaboration in interfaces. Terveen identifies
the following key issues as being present in virtually all of these approaches:

1. An agreed-upon goal of collaboration (often referred to as the collaborative
activity). The specification of the goal may not be complete at the onset.
During the collaboration, the parties gradually explore and decide on the
essential details.

2. Plans for performing the activity, division of tasks between the parties, and

coordination. As with the goal, such plans may be only partially specified

initially and evolve with time.

Shared context. The parties must be aware of the progress towards the goal.

4. Communication. The parties must share information and communicate to
establish their goals, allocate tasks, etc. Observation of the other partners’
activities and behaviors is also essential.

5. Adaptation and learning. Effective collaboration leads to partners learning
about each other and adapting to each other in order to maximize the success
of their joint efforts.

@

Terveen distinguishes human-complementary from human-emulation approaches
for implementing system-user collaboration. The latter is focused on developing
human-like abilities in the system’s interface by, in particular, communicating
via natural language and modeling and recognizing the mental state of the hu-
man user, including his beliefs, goals, and plans. The human-complementary
approach, on the other hand, recognizes the fundamental difference in the natu-
ral strengths of humans and computers and aims to make “the computer a more
intelligent partner” (page 73) by means that leverage the natural strengths of
each party. Our work presented here falls into the class of human-complementary
solutions.

Grosz [11] distinguishes two ways in which the formal theoretical frame-
works of collaborating agents are applied in the design of software: (1) using
the theoretical framework directly as a formal specification that prescribes the
constraints on the system’s behavior, and (2) as a design guide that provides
an “insight” into relevant aspects of successful system-user collaboration at the
design stage. Grosz argues that effective human-computer collaboration does not
require human-like abilities in the interface but can be brought upon by different
mechanisms. She calls for investigating approaches in design that strengthen the
collaborative properties of system interfaces and solving computational research
problems that arise in implementing such approaches.

The theory of collaboration guides our design approach by serving as a lens
through which system-user interactions are viewed. In particular, we follow the
philosophical view of Bratman [4] and the SharedPlans [12] mathematical model
of collaborative action expressed in the form of a logic. Throughout this pa-
per, when we refer to the theory of collaboration, we are referring to these two
theories.

Grosz summarizes the SharedPlans model in [11, page 536]:

“Translated into English, the definition states that for a group activity
to be collaborative, the participants must have (1) intentions that the
group perform the group activity; (2) mutual belief of a recipe; (3) in-
dividual or group plans for the constituent subactions of the recipe; and

(4) intentions that their collaborators (fellow group members) succeed
in doing the constituent subactions.”

A recipe refers to how to perform the activity, as agreed upon by all participants.
The specification implicitly requires that participants communicate as necessary
to share their knowledge in order to establish mutual belief in the overall recipe,
form individual and group plans, or provide helpful information. Partners must
also maintain some knowledge of the context of their interaction for that inter-
action to be efficient. Clause (4) above also implies that subtasks are assigned
according to the collaborators’ capabilities, and that partners must be commit-
ted to helping each other when the success of their joint activity requires it
[12,11]. Note that the collaboration we consider in this work involves only two
partners, the system and its user, and no subgroups are involved.

The SharedPlans formulation is consistent with the principles Bratman iden-
tifies as required for a joint activity to be a collaboration. His requirement of
commitment to the joint activity implies that the parties have intentions to suc-
cessfully perform the activity together. It also captures intentions to refine the
group and individual plans for the activity, share information whenever nec-
essary and, overall, act in a way that leads to the success of the collaborative
enterprise. The mutual responsiveness requirement states that the partners must
adjust their own behaviors based on the actions and intentions of their collabo-
rators in a way that facilitates achieving their joint goal. Commitment to mutual
support further requires that all parties be ready to help a partner who is having
difficulty with her portion of the activity if they can provide such help.

The key parameters summarized by Terveen are present in both SharedPlans
and in Bratman’s account, though “packaged” differently. This allows us to refer
to Terveen’s concepts in our exposition throughout this paper, while employing
the more elaborate and nuanced specifications of SharedPlans and Bratman
where necessary. We must note that those two theories also address important
collaboration-related phenomena that extend beyond Terveen’s list of five.

Software artifacts that embody collaborative behavior in some form have
been implemented for a variety of domains (e.g.[21,5, 3]). However, we are not
aware of any applications of the collaboration paradigm to large-scale multiuser
organizational systems, such as ERP systems, other than our own work.

2.2 Usability and Design Principles for Enhancing Usability

We rely on one of the most widely accepted definitions of usability, which is
based on the ISO standard 9241-11. It defines usability as the “extent to which
a product can be used by specified users to achieve specified goals with effective-
ness, efficiency and satisfaction in a specified context of use.” [16, page 2]. While
there are other definitions of usability (e.g. [9, page 4], [10, page 300], [22]), they
are fundamentally consistent with the core elements of the ISO definition.

The three core terms are defined as follows: effectiveness is specified as “accu-
racy and completeness with which users achieve specified goals;” efficiency refers
to “resources expended in relation to the accuracy and completeness with which

users achieve goals;” and satisfaction is “freedom from discomfort, and positive
attitudes towards the use of the product.” For example, if the user’s goal in a
specific ERP context is to complete purchase requisitions, effectiveness refers to
the extent to which the finished purchase requisitions reflect the intended pur-
chases accurately and are complete; efficiency refers to the number of purchase
requisitions completed within a unit of time; and satisfaction refers to the ex-
tent to which the user is able to complete the task without discomfort and with
positive attitudes regarding the process of using the system. Three other ele-
ments of critical importance to this definition of usability are “specified users,”
“specified goals,” and a “specified context of use.” Any concrete way to measure
effectiveness, efficiency and satisfaction will produce different results depending
on the user — goal — context of use combination.

A great deal of literature — both academic and practitioner — exists on design
guidelines and principles for enhancing usability. This work can be divided into
two streams: one focusing on characteristics of the artifact and the other on the
design activity itself. Since our work concerns the artifact, we consider only the
former stream here.

Polson and Lewis [20] present a set of design principles for applications that
would allow “successful guessing.” These highly regarded principles were based
on their CE+4 theory concerning the learnability of a system and are aimed
at walk-up-and-use interfaces. While we are also deriving design principles from
theory, a key difference is our focus on interfaces for handling complex processes.

The work that is most relevant to our own is Nielsen’s [18] time-tested and
well-known set of usability heuristics, which can be viewed as both design guide-
lines and a way to define systems in terms of concrete indicators of specific
characteristics. Nielsen analyzed seven sets of well-known usability heuristics
and used principle components factor analysis to extract nine factors, essentially
integrating the heuristics into a set of design principles based on their ability to
“explain” usability problems. Each heuristic is listed below and followed by a
description:

1. Visibility of system status: provide users with feedback regarding the status
and progress in task performance.

2. Match between the system and the real world: use the vocabulary of terms
and follow the conventions with which users are familiar.

3. User control and freedom: allow users to redo or undo actions; do not limit
the actions that users can take at a specific time.

4. Consistency and standards: define and present the same things in the same
way across the system.

5. Error prevention: reduce the opportunities for users to make mistakes.

6. Recognition rather than recall: make objects and options available and visible
for users.

7. Flexibility and efficiency of use: allow experienced users to use accelerators

of action (such as shortcuts).

Aesthetic and minimalist design: include only relevant information in dialogs.

9. Help users recognize, diagnose, and recover from errors: be able to detect
errors, identify their sources, and provide constructive solutions.

®©

Nielsen’s usability heuristics have been widely accepted in the field of HCI
and frequently cited in usability evaluation studies. It has been reported that
these heuristics could help find serious usability problems that are likely to cause
“major delays or [prevent] the users from completing their task” [18, page 154],
resulting in low effectiveness and efficiency.

Like Nielsen, our purpose in designing guidelines is to capture the most fre-
quently occurring usability problems and to lay a foundation for designing more
usable systems. Our principles, however, are derived theoretically from collab-
oration theory, which can be used to explain Nielsen’s principles and also to
provide another view of human-computer interactions that may reveal a wider
range of usability issues.

3 Lessons From the Field

In this section, we present lessons learned from our field studies. We interviewed
33 employees at three organizations located in a northeastern U.S. state dur-
ing fall 2008 and spring 2009. These organizations represented different industry
sectors (IT, property management, and medical device manufacturing), used dif-
ferent ERP systems, and had varying levels of system experience. The interviews
were semi-structured and conducted with a set of interview questions that were
designed to learn users’ perceptions of and experience with ERP systems through
the lens of collaboration. Interviews were audio recorded and then transcribed
and coded. Using examples from these interviews, we reveal the link between col-
laboration and usability by demonstrating how the absence of key properties of
system-user collaboration [24] can be viewed as violations of several of Nielsen’s
heuristics [18].

Shared goal. Successful system-user collaboration requires that each party in
the collaborative activity knows the shared goal. Since ERP systems are designed
to assist users, the shared goal between the system and a user is often equivalent
to the user’s goal. Thus, it is important for the user to be clear about what the
business goal is before performing any task. This is illustrated by the following
comment from a superuser (an experienced user who has a strong understanding
of how the data and processes are related and routinely uses different components
of the system):

User 1: And the first thing is [to] forget about the system for a sec. Keep your
keyboard away, discuss as a group, individually, collectively, whatever, what
are you trying to do conceptually. Then execute.

The plan to achieve the goal. Even though users know the business goal and
the logical steps in the plan for achieving it, those steps may not be easily mapped
to the functions provided by ERP systems. The systems’ interfaces, which are
designed for a wide range of business processes, contain various functions, menu
items, instructions, clickable icons and buttons, etc. The intrinsic complexity

of the interrelated business processes coupled with complex interfaces makes it
difficult for users to perform even a very simple action like locating a function.
Moreover, many tasks involve a series of steps, screens, functions, forms, and
data. The ERP systems in our study did not provide navigational or procedural
guidance through these processes:

User 2: It [the system] doesn’t tell you what steps to take next. You have to
basically know what the next step is for your process, for what your job title is
to do.

As a result, users spend a significant amount of time in training, communi-
cating with colleagues, and using trial and error approaches to learn the steps for
their tasks. These steps are described by users as “unintuitive,” as they often do
not match the logical steps that users associate with the business processes. As a
result, users frequently create “cheat sheets” that document the procedures and
steps required for a task. With practice, users may no longer need these notes,
but they continue to rely on them for performing non-routine tasks:

User 3: I have a little checklist, so when I do ACH payments, I just have screen
charts and just little directions that I need to go back in and redo it. I have just
directions on step-by-step with the screen chart. This was just so much easier.

The need for memorization and notes is in violation of several of Nielsen’s
[18] usability heuristics. The match between ERP systems and the real world is
not particularly good (violating heuristic #2), and, clearly, ERP systems require
recall rather than supporting interactions based on recognition (in violation of
heuristic #6). In addition, the lack of navigational and procedural guidance vi-
olates heuristic #1: system status is typically not available, leaving users unsure
of their progress in performing a task.

Shared context. In an ERP system, the shared context includes the busi-
ness context for the task. That contextual information may not be explicit and
immediately clear to users:

User 4: If I had a new person in purchasing, I'd need to tell them what the
company code was and how our GL chart of accounts worked and what our
cost-center structure is — a lot more details in order for them to be able to
enter just one invoice. And then it’s spider webs off of that as far as whether
it’s a fixed asset or pre-paid, etc. So there’s a lot more information that needs
to be shared there if we had a new employee in any one of those areas.

Actually, the system maintains the business contextual information and could
easily present it to users if it had been designed to do so. This example suggests
another violation of Nielsen’s heuristic #2: the match between the system and
the real world is not as good as it could be. This example also points to a
contribution of the collaborative theory-based approach to viewing system in-
teractions, i.e., the emphasis on sharing information between the system and its
users, which is not part of Nielsen’s heuristics.

Information on progress and feedback to the user are also important context
that the system should provide in general and are essential when the user needs
help. The system must first be able to detect and recognize that need for help,
but ERP systems typically play a passive role:

User 5: Now, the thing is that in this case, the system is not reaching out to
you saying that you obviously need help. It’s me having to go find it there. Just
to go back to that GL account scenario, rather than just telling me you had to
put something in, if it knew automatically what that one was supposed to be,
and once you failed, say three times, or X times putting in the wrong one and
then at that point, it would query you — you obviously need help here. And then
it would send you to a help desk function.

Furthermore, ERP systems often fail to utilize the contextual information
they possess regarding the organization, user, business process, and task. An
error message may simply report that there is a problem without offering any
diagnoses or suggestions, or even isolating where that problem exists. While
some error messages provide possible solutions, users often find them to be too
general to be helpful:

User 6: No, it doesn’t tell me detail, but it tells me that it cannot be performed
at this time.

User 2: It’s just the [dinging] sound, yes! Nothing comes up and you know that
you’re looking at the wrong order in the wrong [location]. It doesn’t come up
with a pop up screen that says this is the wrong order.

Some users try to seek solutions by reading system-provided help documents,
but this is usually not a productive use of time, as the documents are often not
specific to the task at hand and do not consider the context of the activity. As
a result, users typically ask someone else (coworkers, superusers, IT staff) for
help:

User 5: I would just call someone because again, I have spent time trying to
figure it out and go through the menu path, and I feel like I always get more
lost and I'm just trying to save time, so I just usually pick up the phone and
call someone.

These examples illustrate violations of Nielsen’s heuristics #1 and #9: in an
error situation, the users find it impossible to use the system to identify needed
status information, and the system is often unable to help users recover from
errors.

Communication. A collaborative activity will likely fail if the parties do
not maintain good communication. Communication requires sharing knowledge,
which, in ERP systems, includes business data, the procedure for a task, status
and progress reporting, and context. To communicate and share knowledge, the
system should speak the users’ language and use the vocabulary of terms with
which they are familiar. However, the terminology used by some ERP systems

is drastically different from the users’ and little or no explanation is provided
about what terms mean:
User 5: I don’t know how it’s chosen that for vendors it’s XK, and for purchase
orders it’s ME prior to the numbers. I do know, obviously, the numbering
system as far as O1 is for creation, O2 is for change, and O3 is for display.
But no idea what it means to the actual function!
User 7: Sometimes when I get an error message and I don’t know why I'm
getting it then that’s when it’s questionable about what’s going on. Because
usually it’s in codes, and I don’t understand that.

Incomprehensible terms and error messages are in direct violation of Nielsen’s
heuristic #2 (the match between the system and the real world), which includes
components such as “Speak the user’s language” and “Contains familiar terms
and natural language.”

Adaptation and learning. To maximize the long-term success of a collabo-
ration, each party needs to learn from and adapt to the others. In interactions
with ERP systems, users are the ones who must do the adapting. An alternative
would be for the system to also adjust to its users’ behaviors by taking into
consideration their previous actions. This would enable the system to automat-
ically populate previously entered data, list functions in the order of frequency
of use, offer an option of repeating a frequently performed task, etc. However,
such capability is currently lacking:

User 7: I don’t think it does something to make it easier due to the replication
of me doing something. So, if the system had enough intelligence that it noticed
that I am always printing the details for all the items that are on the overall
report, and then it would say let me offer you, do you want to print all of this?
You seem to be doing this always.

Nielsen’s heuristics do not include any with a direct match to such behavior.
He does identify “use of default values so that the user does not have to re-
enter information” [18, page 153] as one of the heuristic candidates that was
not included in the final set of nine. Use of default values is, of course, more
narrowly defined than the broader consideration of previous actions, and this is
clearly one of the areas where our approach extends those heuristics.

The above examples illustrate the lack of collaboration between ERP systems
and their users, and the frequent violations of Nielsen’s usability heuristics can
be framed in terms of the non-collaborative behavior of these systems. A true
collaboration aimed at enhancing usability requires a partnership, the absence
of which is best summarized by a superuser in this vivid way:

User 8: So with the system, it’s somebody that just smirks at you. And when
you make mistakes, it looks at your with the same kind of dopey look on its
face ... And it starts forcing you to kind of work around and work over and
work under. And that’s the frustrating part about it that again is the biggest
pain in the backside. So, I would say, it’s not a good partner, I feel like it’s an
impassive sometimes uncooperative coworker.

10

4 Design Principles

In this section, we first analyze the central constructs of collaboration theory
as they apply to system-user interaction in the ERP domain. We then derive
design principles for making the system a better collaborative partner, based on
our extensive field study of ERP usage and the theoretical framework outlined
in section 2.1.

4.1 System-User Collaboration in the ERP Domain

A shared goal and intentions towards it are the prerequisites to any collaboration;
thus, we review these concepts in the context of the ERP domain. The overall
goal of this system-user collaboration is to automate the management of data
related to the business processes within an organization for achieving greater
organizational efficiency. This high-level goal can be decomposed into smaller,
more specific activities (such as fulfilling a customer order) and even further
down into transactions involving an individual user and the system working on
a particular task. While the set of tasks an individual user is exposed to is
limited, they are part of a chain of tasks that correspond to the components of
a business process.

Intentions towards collaboration. We view the process of users collab-
orating with ERP systems as being similar to the collaboration that occurs
between co-workers in an organization. While co-workers can choose not to par-
ticipate in the organization’s processes, this option is rarely taken due to the
likely negative consequences. Similarly, employees are motivated to use the ERP
system for both contractual reasons as well as for benefits derived from such use.
A further simplification is that, unlike a human co-worker, the system does not
have any competing intentions; all of its time and resources are devoted to its
users.

Given the proper intentions towards the shared goal, it is important to con-
sider the knowledge and abilities of the collaborators for the optimal division
of labor according to each partners’ strengths. In terms of knowledge and abil-
ities, an ERP system is an embodiment of widely generalized organizational
practices. It has superb capacity for storing, organizing, retrieving, and visualiz-
ing organizational data. An employee has partial knowledge of the organization’s
operations and business transactions, business practices, and associated data. It
is important to realize that, while this knowledge depends on the employee’s
role, it is always incomplete.

4.2 Designing for Collaborative System-User Interactions

Knowing the plan and communication. To engage in a successful collab-
oration in performing an activity, the system and its users must be aware of
the owverall recipe. The system’s communication to the user regarding the steps
to be taken includes textual and pictorial labels on input fields and buttons;
components used for navigation, such as menus and lists of transactions; and

11

instructions and other text provided in dialogs and error messages. When users
are familiar with the steps involved in completing a task, they are quite efficient
at using the system to do so. However, the learning process is lengthy and char-
acterized by negative terms such as “brutal” and “intimidating.” This is due to
multiple factors, including the mismatch between the users’ and the system’s
vocabularies and the generic nature of the interfaces, which do not reflect the
practices with which users are familiar. From the collaborative standpoint, the
user is the one forced to take on the burden of learning to speak the system’s
language, utilize the necessary functionality, and navigate to the appropriate
interfaces.

The complexity of the learning process and the overall effort expended by the
user would be greatly reduced if the system took part of this process on itself.
For example, having labels on menu options, transaction names, input fields,
etc. be consistent with the organizational vocabulary would greatly improve the
user’s understanding and confidence. Furthermore, the graphical interface could
be customized to include only those input components that are essential for the
organization. This latter kind of optimization is sometimes done in practice but
is typically avoided because of initial costs and, more importantly, incompatibil-
ities with later versions of the ERP software that will incur future costs. These
considerations lead us to our first design principle (henceforth abbreviated DP):

DP1. The user interface should provide a mechanism for customizing the vo-
cabulary of terms used by the system in its communication to the user, the com-
position of business transactions, and the content of the system’s informational
output to match the practices of the organization. There should be a mechanism
for incorporating the customizations from an earlier version of the system to a
later one.

This design principle does not prescribe a particular method of customiza-
tion. For example, it can be done using machine learning techniques that draw
on the history of system-user interactions, or can be performed manually, or
can be achieved using some combination of the two. While we are working on
developing effective methods (algorithms, representations) and design sketches
for implementing our design principles, they are beyond the scope of this paper.

To further aid a novice or an infrequent user in understanding the steps
required to complete a task, the system should provide navigational support
and information on progress in completing a process. From the collaboration
standpoint, this sort of explanatory guidance is required, since the system is the
one with complete knowledge of the relationships between the data, the process,
and the interface components, and must share any knowledge that the human
partner needs to perform her part.

DP2. The system should provide navigational and progress guidance to a user
performing a transaction, indicating the broader context of each interaction in
terms of the related business process components and specifying the completed
and remaining parts. A sufficiently competent user should be able to turn off this
guidance if it becomes a distraction.

12

Commitment to helping a partner in need. When something goes wrong
during an interaction and an error is signaled by the system, users often expe-
rience difficulties understanding and resolving the problem. The poor quality of
the error message can be a factor, but even if the message is reasonably descrip-
tive, the user’s difficulties are often due to the following:

— Data-to-process and process-to-process relationships play a critical role in
defining ERP system functions, but they are too numerous to be known in
their entirety. Because of this complexity, the structures and relationships
between processes and data are typically hidden from the users, leaving
them unable to diagnose the causes of many even trivial problems, such as
an incorrectly specified code.

— Even when a user is familiar with the business context and operation of the
interfaces being used, another hurdle in diagnosing problems stems from the
fact that ERP systems involve multiple users working on different parts of
time-extended business processes. The processes affect different but related
portions of business data, but individual users often lack an understanding
of how their tasks relate to the broader process in which they are taking
part. This greatly impedes their ability to diagnose and correct errors that
resulted from the actions of other users in a related task interface.

“in_

As a result of the above plus the user’s perception of the ERP systems as
timidating,” the most common error diagnosis and resolution strategy involves
asking another person (colleague, superuser, consultant, etc.) for help. The sys-
tem can be so obscure that even users who have encountered the same error
before often cannot recall how to overcome it. The help function is regarded as
a waste of time due to the lack of context of the information that is presented
and the effort required by the user to “connect the dots.” In our field studies,
we have invariably encountered stories about errors that took days to diagnose.

Collaboration presupposes a commitment to completing the joint activity and
helping a partner who is having a problem performing her part. When a system
signals an error, it is a clear sign that it is aware of the fact that something has
gone wrong. Typically, the ERP system’s involvement in diagnosis and correction
of errors stops at the reporting stage. In many cases, the system has access to
contextual data that would explain the cause of the problem. Sometimes the
solution or a set of possibly helpful actions are readily available and identifiable,
but the system usually takes a passive role, leaving the burden of diagnostic
discovery to the user. This behavioral pattern is primarily due to the lack of
focus at the design stage to providing error diagnostics and recovery functions
in the system interfaces.

Two examples illustrate our point. The first is a simple, real life case in which
a user has entered a shipment date into a field. The system rejects the user’s input
and generates an error message stating that the date is in an incorrect format.
The system waits passively for the user to correct the error. A more collaborative
response would be for the system, when displaying the error message, to also
bring up its calendar feature from which the date can be selected, or at least
suggest the use of this feature.

13

An example with a less obvious solution is an error that resulted from a
mismatch between the parameters of a business process entered by different
users. This is the type of error that would typically be sent to a superuser to
diagnose. Instead, the system could aid in the diagnosis by providing the broader
context of the interaction within which the mismatch occurred: i.e., display a
list of the related transactions and provide easy access to views of the related
data.

Not all error situations are due to the actions of the user; for instance, a
storage device failure may prevent the system from saving data. Commitment
to the success of the collaborative activity requires that the system not give up
until it has explored other avenues for problem resolution and consulted with
the user when his agreement to a solution is required.

DP3. When the system detects a problem, it should identify the possible causes
and ways of resolving it. If the fix is obvious, the system should inform the user
and perform it. If it isn’t obvious, the possible causes and resolution scenarios
should be presented to the user and be readily executable. If the system is unable
to identify resolution strategies, it should present the user with the relevant data
and transactions.

Deciding whether to proceed with a fix to a problem with or without engaging
the user depends on the nature of the problem and, sometimes, the particular
user’s preferences. These items should be carefully considered during the system
design stage to make error resolution and diagnosis effective.

Other helpful behaviors. Helpful behaviors are those that increase the effec-
tiveness and efficiency of the collaborative efforts of the parties and increase the
likelihood of the success of the joint activity. As theory states, such behaviors
stem from the partners’ commitment to the success of the joint activity. Humans
often do things that are helpful for a group effort without being explicitly asked.
For example, when going to a business meeting, they take their calendar with
them, knowing the group may need to schedule the next meeting. In doing so,
people are using their knowledge of the task, the environment, their partners,
and their commonsense reasoning abilities. There are many opportunities for
designing helpful behaviors into the system based on both a priori analysis of
the tasks, environment, and users, as well as the data collected during system
use. An example is displaying those currencies most frequently selected by the
user in prior interactions at the top of the list of world currencies.

A less straightforward example involves the wide variety of search interfaces
common to ERP systems. To find a code for a specific material, for example,
one can search through the entire material master, or by material by plant,
or by material group. If a user invokes a search interface, instead of blindly
offering a collection of tabs for all possible search options, the system can use
the contextual information available to it to rank-order the options and to fill in
any known details. If the user is working on an order form and has specified the
plant for which the order is to be placed, a search for material by plant can be
highlighted and the search interface should include the specified plant number.

14

DPj. In presenting selection choices, the system should utilize what it knows
about the user, the organization, the task, and the context, and provide faster
access to the more likely choices than the less likely ones. Where the choice of
data or action is obvious, the system should have an option of not waiting for the
user to enact it. The user should have an option to replace/cancel the system’s
provided choice of data/action.

5 Discussion

The above design principles for achieving greater usability of ERP systems by
improving their collaborative strength were derived using the theory of collab-
oration and findings from our field studies. Quotations from those studies, pre-
sented in Section 3, highlight collaborative weaknesses of ERP systems. They
also provide evidence of usability problems, many of which can be explained
using Nielsen’s usability heuristics.

As shown in Table 1, our proposed design principles encompass Nielsen’s
usability heuristics, thus supporting usability. However, the principles go far be-
yond merely restating and aggregating those heuristics: they provide a unified
theory-based perspective that explains their utility in terms of human-computer
collaboration. Furthermore, what sets our work apart from other design prin-
ciples for usability is its emphasis on the system’s role in using its capabilities
and knowledge to maximize the effectiveness and efficiency of its use in service
to the user’s goals.

Table 1. Design principles, implied usability heuristics and underlying collaboration
requirements.

Design |[Nielsen’s |Collaboration requirements
principles|heuristics

DP1 |2,7,5 (Terveen) Communication; Adaptation and Learning
(Bratman) Commitment to joint activity; Mutual responsiveness
(SharedPlans) Mutual belief of recipe

DP2 |1,6,7,5 (Terveen) Shared Context; Determining goals; Communication;

Planning, allocation of responsibility and coordination
(Bratman) Commitment to joint activity; Mutual responsiveness
(SharedPlans) Mutual belief of recipe

DP3 [5,9,6,7 |(Bratman) Commitment to joint activity;
Commitment to mutual support
(SharedPlans) Intention that the collaborators succeed

DP4 16,7,8,3,5 |(Bratman) Mutual responsiveness
(SharedPlans) Intention that the collaborators succeed

To illustrate our claim, we consider DP4. Relative to Nielsen’s heuristics, a
system that implements DP4 would enable recognition rather than recall and

15

would have a minimalist design, in order to make likely choices easy to reach and
de-emphasize or remove the irrelevant ones. The shortcut property of heuristic
#7 is manifested by the system enacting the obvious choice, while the user
freedom property of heuristic #8 is preserved by allowing the user to undo the
system’s choice and follow up with her own. Easy access to the most relevant
choices reduces the chances of the user selecting the wrong one (heuristic #5).
What collaboration theory adds to this formulation is the system’s responsibility
to bring to bear all its knowledge of the users, tasks, organizational practices,
and context of the interaction in order to produce the most useful choices and
present or enact them in an effective way.

The set of the principles presented here is not intended to be exhaustive. User
interface design for usability involves considerations of varying granularity: from
general design of the interaction sequences to minor details of layout and style.
In our analysis, we deliberately focused on the “big picture,” highlighting the
aspects of the interaction that we found particularly problematic for the users.
However, the principles have broad applicability and demonstrate how the theory
of collaboration can be used as a design guide to address design issues at various
levels of granularity.

6 Conclusions

The human-computer collaboration paradigm employed here has been applied in
several domains, with the implicit goal of creating software that is more effective,
efficient and pleasant to work with and that behaves like a user’s partner. How-
ever, the link between the collaborative properties of such systems and usability
has not been formally addressed before this work. Quotes from actual ERP users
presented in this paper highlight the relationship between poor usability and the
collaborative weaknesses of a system. We have presented design principles for
improving the usability of ERP systems, derived from collaboration theory and
field studies, and outlined how they address the usability shortcomings in terms
of Nielsen’s usability heuristics and our field observations.

While some practices that implement collaborative behaviors exist in com-
monly used interfaces, developing new, effective methods for the particular prop-
erties of the ERP domain is part of our on-going investigations. We are currently
developing algorithms and representations to support the design principles de-
scribed here and are implementing artifacts to demonstrate the application of
those principles.

References

1. Babaian, T., Lucas, W., Topi, H.: A data-driven design for deriving usability met-
rics. In: Proc. of ICSOFT-07. pp. 154-159 (2007)

2. Babaian, T., Lucas, W., Topi, H.: Visualizing the process: A graph-based approach
to enhancing system-user knowledge sharing. In: Proc. of ICEIS-05. pp. 122-128
(2007)

16

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Babaian, T., Grosz, B.J., Shieber, S.M.: A writer’s collaborative assistant. In: Proc.

of TUT-02. pp. 7-14. ACM Press (Jan 2002)

Bratman, M.E.: Shared cooperative activity. Philosophical Review 101(2), 327-341
1992

](Breaz)eal, C., Hoffman, G., Lockerd, A.: Teaching and working with robots as a
collaboration. In: Proc. of AAMAS-04. pp. 1030-1037. IEEE Computer Society
(2004)

Cohen, P., Levesque, H.: Teamwork. Nous 25, 487-512 (1991)

Cooprider, J., Topi, H.and Xu, J., Dias, M., Babaian, T., Lucas, W.: A collabora-

tion model for ERP user-system interaction. In: Proc. of HICSS-10 (2010)
Dumas, J.S.: User-based evaluations. The human-computer interaction handbook:
fundamentals, evolving technologies and emerging applications pp. 1093-1117
2003)

](Dumas, J.S., Redish, J.C.: A Practical Guide to Usability Testing. Intellect, Ltd,
Bristol, UK (1999)

Gould, J.D., Lewis, C.: Design for usability: Key principles and what designers

think. Commun. ACM 28(3), 300-311 (1985)

Grosz, B.G.: Beyond mice and menus. Proceedings of the American Philosophical
Society 149(4), 529-543 (12 2005)

Grosz, B.G., Kraus, S.: Collaborative plans for complex group action. Artificial

Intelligence 86(2), 269-357 (1996)

Herbert, L.: Put business applications to the usability test. Forrester Research
(2006)

Hestermann, C.: Key issues for enterprise resource planning. Gartner (2009)

Tansiti, M.: ERP end-user business productivity: A field study of SAP & Microsoft:
Keystone strategy. http://download.microsoft.com/download/4/2/7/42Tedce8-
351e-4e60-83d6-28bbf2f80d0b/KeystoneERPAssessmentWhitepaper.pdf ~ (down-
loaded 12/21/2009) (2007)

ISO 9241-11: Ergonomics requirements for office work with visual display terminals,
part 11 -guidance on usability. International Standards Organization (1998)
Kinny, D., Ljungberg, M., Rao, A.S., Sonenberg, E., Tidhar, G., Werner, E.:
Planned team activity. In: Castelfranchi, C., Werner, E. (eds.) Artificial Social
Systems (LNAI-830). Springer Verlag, Amsterdam, The Netherlands (1994)
Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: CHI. pp.
152-158 (1994)

Norman, D.A.: Human-centered design considered harmful. Interactions 12(4), 14—
19 (2005)

Polson, P.G., Lewis, C.H.: Theory-based design for easily learned interfaces. Hum.-
Comput. Interact. 5(2), 191-220 (1990)

Rich, C., Sidner, C.L., Lesh, N.: Collagen: applying collaborative discourse theory
to human-computer interaction. AI Mag. 22(4), 15-25 (2001)

Rosson, M.B., Carroll, J.M.: Usability engineering: scenario-based development of
human-computer interaction. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (2002)

Searle, J.R.: Collective intentions and actions. In: Cohen, P.R., Morgan, J., Pollack,
M.E. (eds.) Intentions in Communication, pp. 401-415. MIT Press, Cambridge, MA
1990

’(l“erve)en, L.G.: Overview of human-computer collaboration. Knowledge-Based Sys-
tems 8(2-3), 67-81 (1995)

Topi, H., Lucas, W., Babaian, T.: Identifying usability issues with an ERP imple-
mentation. In: Proc. of ICEIS-05. pp. 128-133 (2005)

