
Implementing Design Principles for
Collaborative ERP Systems?

Wendy Lucas and Tamara Babaian

Bentley University, Waltham, MA 02452, USA
{wlucas,tbabaian}@bentley.edu

Abstract. Enterprise Resource Planning (ERP) Systems are notori-
ously difficult for users to operate. We present a framework that consists
of a data model and algorithms that serve as a foundation for implement-
ing design principles presented in an earlier paper for improving ERP
usability. The framework addresses the need for providing user, task and
process context of each system-user interaction. It is intended to form
an integral part of the system’s data model, which can be queried in real
time to produce the information required for a variety of user interface
enhancements. We have implemented the framework within an ERP pro-
totype and used it in a laboratory emulation of ERP usage. Using the log
data from this laboratory emulation, we present examples demonstrat-
ing how the framework meets its design goal of providing contextual and
historical information.

Keywords: Usability, human-computer collaboration, enterprise sys-
tems, ERP, human-computer interaction.

1 Introduction and Motivation

Enterprise Resource Planning (ERP) systems integrate data and information
flow from throughout the organization. Companies rely on them for standardiz-
ing their processes around best practices. Rather than the system conforming to
the way a particular company does business, the company must conform to the
system-prescribed approach in order to reap the maximum benefit. Representing
industry-wide rather than company-specific practices places a heavy burden on
the user, who must undergo extensive training to learn how to perform particular
tasks with the system. Users typically memorize how to do those tasks, as the
underlying processes are hidden behind very complex interfaces and little guid-
ance or support is provided by the system. The poor usability of ERP systems
has been noted in industry reports [16, 22, 15, 17] and our own field studies [26,
10], yet usability problems still abound. Considerable advances in research on

? This material is based in part upon work supported by the National Science Foun-
dation under Grant No. 0819333. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

2

human-computer interaction [19] have also not resulted in significant improve-
ments in ERP system design.

The work presented here is part of a comprehensive research effort aimed
at achieving a breakthrough in the usability of enterprise systems by applying
the human-computer collaboration paradigm [25] to system design and evalu-
ation. This paradigm is grounded in theory of collaboration and requires that
the system act as a partner that supports its users in the increasingly complex
environments of modern applications [13]. To be a collaborative partner, the sys-
tem must do its part by sharing information and adjusting its behaviors based
on its knowledge and awareness of the user, the context of the interaction, and
its own functionality. (Note that this is different from Computer-Supported Co-
operative Work (CSCW), which is concerned with computing technology that
supports human collaboration).

In previous work [7], we derived four design principles based on system-user
collaboration for addressing the usability issues identified in our field studies. In
this paper, we present a representational framework and algorithms that serve as
a foundation for implementing these principles. In validating our approach, we
focus here on two of these principles, which are referred to as Design Principle
2 (DP2) and Design Principle 4 (DP4). DP2 concerns providing context- and
user-appropriate navigational and progress guidance to the user. DP4 focuses
on improving access to data and actions that are most likely to be relevant and
useful. The other two principles, which involve mechanisms for customization
and error handling, are also supported by our framework and are topics of on-
going research that is beyond the scope of this paper.

Our framework specifies a model that represents the system’s task structure,
interface components, and usage log of all user-system interactions. It has been
specifically designed to enable the system to make effective use of usage histories
during system-user interactions. This model, which we refer to as the Task-
Interface-Log, or TIL, model, provides the requisite information for supporting
the design principles by explicitly associating low-level user inputs with higher-
order processes. Our approach is further distinguished by its use of logged data
in support of system-user interactions in real time, as opposed to the off-line
processing of logged data for process mining and discovery purposes [2, 23], which
is the more common focus of research involving usage logs in the enterprise
system domain.

We have implemented the TIL model in SQL and embedded it in an ERP
prototype. To evaluate the capabilities of both the TIL model and the algo-
rithms for supporting the design principles, we conducted an emulation of the
use of ERP systems in a laboratory setting. The usage data collected from this
emulation was used to validate our approach.

The next section of this paper presents related work. This is followed by de-
scriptions of the design principles. We then present our representational frame-
work and examples that illustrate the framework’s utility using empirical data.
We conclude with a discussion and directions for future work.

3

2 Related Work

Usage data has been used extensively for extending the functionality of auto-
mated tutoring, recommender, and adaptive hypermedia applications (e.g. [21,
9]). Jameson [20] provides a review of interfaces that adapt their behaviors in
order to better meet the needs of the user. In these applications, the possible set
of actions that a user can perform is typically well-defined, and the emphasis is
on modeling the user in order to provide suitable recommendations, guidance,
and support.

The ability to reason from usage logs for supporting users in real time within
the context of complex enterprise systems is far less commonplace. Günther et
al. [14] describe how event logs are recorded at very low levels of abstraction,
making them difficult to relate to activities within a process. As noted by Ivory
and Hearst [18], keystroke data is easy to record but difficult to interpret. Our
framework overcomes this hurdle by associating interface components with both
contextual information and usage histories, making it possible to analyze and
utilize data ranging from the keystroke level to the task level, from a single user
to multiple users.

While ERP users are constrained by the business logic of the system, there
are no strictly enforced process models. Rozinat and Aalst [23] have shown that
activities followed in completing a process, as mined from ERP system logs
and other administrative systems, often deviate from the prescribed process. A
variety of algorithms and techniques exist for constructing process models from
low-level events in a usage log [2]. Investigating system usage by applying such
techniques for deriving workflow models that can then be analyzed off-line is the
focus of much of the work in this area (see, for example, [4, 5, 11, 6]).

Our own interest lies in developing design models that enable a system to
provide dynamic guidance and support to users based on process sequences cor-
responding to actual organizational practices, which is the subject of far less
research. Aalst et al. [3] describe an application that focuses on processes that
have not yet completed for checking on conformance, estimating completion
times, and making recommendations on steps for minimizing overall flow times.
Schnonenberg et al. [24] propose a recommendation service that guides users
by giving recommendation on possible next steps based on past process exe-
cutions. It has been implemented in ProM [4], an open-source process mining
framework for implementing process mining tools. A partial case from the user
who is seeking guidance, consisting of a sequence of performed steps, is sent to
to the recommendation service. The case is then compared to the log, and a
recommendation is generated.

The above works are all based on discovering processes from usage log ac-
tivity traces that are contained within the time period between the predefined
starting and ending activities. This approach is complicated by the noise that
comes from the non-process related tasks that are commonly interleaved with
the process-related ones within the identified time period. Aalst [1] notes that
there are several shortcomings to existing algorithms due to processes being
highly concurrent and the existence of complex dependencies between activities.

4

In our framework, we avoid many of the challenges inherent in mining-based
approaches because our model contains the specification of tasks included in the
process. Our approach is distinguished by the ability to automatically and ac-
curately identify process instances based on log records, by virtue of the direct
representation of tasks, processes and the flow of domain objects in the TIL
model.

3 Design Principles

Given the integrated nature of ERP systems and the complexity of their design,
approaches that specify isolated patches for addressing particular issues will not
succeed in improving overall system usability. Rather, a systematic approach
for evaluating and addressing usability issues is required. Our field studies of
ERP system users revealed common categories of usability issues that can be
explained as examples of non-collaborative behavior between the system and
its users. We applied collaboration theory [8, 13] as the unifying perspective for
viewing human-computer interactions in deriving our design principles [7], which
are presented in figure 1. What we refer to throughout this paper as processes
are referred to as transactions in these principles.

!"# $%&'()&*'+,-&*./0&')%1(23'4*15+3&'/'6&0%/,+)6'.1*'0()-16+7+,8'-%&'510/9(2/*:'1.'-&*6)'
()&3'9:'-%&'):)-&6'+,'+-)'0166(,+0/-+1,'-1'-%&'()&*;'-%&'01641)+-+1,'1.'9()+,&))'
-*/,)/0-+1,);'/,3'-%&'01,-&,-'1.'-%&'):)-&6<)'+,.1*6/-+1,/2'1(-4(-'-1'6/-0%''-%&'
4*/0-+0&)'1.'-%&'1*8/,+7/-+1,='$%&*&')%1(23'9&'/'6&0%/,+)6'.1*'+,01*41*/-+,8'-%&'
0()-16+7/-+1,)'.*16'/,'&/*2+&*'5&*)+1,'1.'-%&'):)-&6'-1'/'2/-&*'1,&='

!"# $%&'()(*&+'(%,-./'01,23/&'452365*3,45.'54/'01,61&(('6-3/547&'*,'5'-(&1'0&18,1+346'5'
*154(57*3,49'34/375*346'*%&':1,5/&1'7,4*&;*',8'&57%'34*&157*3,4'34'*&1+(',8'*%&'1&.5*&/'
:-(34&(('01,7&(('7,+0,4&4*('54/'(0&738)346'*%&'7,+0.&*&/'54/'1&+534346'051*(<'='
(-88373&4*.)'7,+0&*&4*'-(&1'(%,-./':&'5:.&'*,'*-14',88'*%3('6-3/547&'38'3*':&7,+&('5'
/3(*157*3,4<''

!"> ?%&,'-%&'):)-&6'3&-&0-)'/'4*192&6;'+-')%1(23'+3&,-+.:'-%&'41))+92&'0/()&)'/,3'@/:)'1.'
*&)125+,8'+-='A.'-%&'.+B'+)'195+1();'-%&'):)-&6')%1(23'+,.1*6'-%&'()&*'/,3'4&*.1*6'+-=''A.'+-'
+),<-'195+1();'-%&'41))+92&'0/()&)'/,3'*&)12(-+1,')0&,/*+1)')%1(23'9&'4*&)&,-&3'-1'-%&'
()&*'/,3'9&'*&/3+2:'&B&0(-/92&='A.'-%&'):)-&6'+)'(,/92&'-1'+3&,-+.:'*&)12(-+1,')-*/-&8+&);'
+-')%1(23'4*&)&,-'-%&'()&*'@+-%'-%&'*&2&5/,-'3/-/'/,3'-*/,)/0-+1,)=''

!"> ?4'01&(&4*346'(&.&7*3,4'7%,37&(9'*%&'()(*&+'(%,-./'-*3.3@&'A%5*'3*'B4,A('5:,-*'*%&'
-(&19'*%&',16543@5*3,49'*%&'*5(B9'54/'*%&'7,4*&;*9'54/'01,23/&'85(*&1'577&(('*,'*%&'
+,1&'.3B&.)'7%,37&('*%54'*%&'.&(('.3B&.)',4&(<'C%&1&'*%&'7%,37&',8'/5*5',1'57*3,4'3('
,:23,-(9'*%&'()(*&+'(%,-./'%52&'54',0*3,4',8'4,*'A53*346'8,1'*%&'-(&1'*,'&457*'3*<'$%&'
-(&1'(%,-./'%52&'54',0*3,4'*,'1&0.57&D7547&.'*%&'()(*&+E('01,23/&/'7%,37&',8'
/5*5D57*3,4<''

Fig. 1. Design principles for greater ERP usability

5

DP1 grew out of reported instances of users needing to undergo a lengthy
process, characterized by some as “brutal” and “intimidating,” of learning the
language of the system and adapting to its practices. DP2 arose from the diffi-
culties users face in understanding the process flow and navigating the system,
with little support on how to proceed or what progress has been made. DP1 and
DP2 are meant to address the failure of the system to be a good collaborative
partner by communicating its knowledge concerning the steps that need to be
taken, the means for performing them, and the progress made toward achieving
the goal.

Numerous reports by users of their inability to determine the cause of an
error, decipher error messages, or figure out how to address the problem led
to the statement of DP3. In such cases, the system is failing to help a partner
in need. Lastly, DP4 grew out of observed and reported cases of the system
presenting all possible choices, even those that will not work in the current
situation, in search interfaces, lists, etc., and failing to take the user’s previous
entries and actions into account. In these cases, the system has not provided
appropriate support to assist the user in daily operations.

The framework presented in this paper provides the information needed for
supporting all four principles. We have limited our validating examples in the
next section to two of these, DP2 and DP4, due to space limitations. Examples
related to DP1 and DP3 will be presented in future work.

4 Representational Framework

In this section, we present the representational framework that we developed
to support implementation of the design principles. The design goals behind
this framework originated from the requirements on the system’s awareness of
historical and contextual data, as necessitated by the design principles:

1. to represent the system’s task and interface structure in a way that enables
reasoning about their relationship to each other and to the ERP domain
data in the context of a business process,

2. to capture and store the history of each system-user interaction in a way
that enables a quick identification of the task and user context of all past
and on-going interactions, as well as recording the lower-level keyboard and
mouse input details, and

3. to make the knowledge included in the first two items accessible to the
system at run-time for supporting a variety of implementations of the design
principles.

The framework includes the Task-Interface-Log (TIL) data model, algorithms
for deriving process-related data, and input-aware components. The following
sections describe the model and algorithms. While the components have also
been implemented, they are not reviewed here.

6

4.1 Overview of the TIL modules: Task, Interface, Logging

At the core of our representational framework is the TIL data model for repre-
senting Tasks and their inclusion in business processes, the Interface components
that implement them, and usage Logs that store the details of system-user in-
teractions.

The Task module of the TIL model captures the description of tasks that the
system implements and their inclusion in business processes. The set of interface
pages associated with each task is described in the Interface module. This module
also describes the composition of each interface page from user input controls,
such as input fields, buttons, and menus. The descriptions within the Task and
Interface modules are static, in that they do not change with use of the system,
with one exception that allows the system to be configured with business process
specifications as desired collections of tasks. The data within these two modules
is used to render interface pages, when the user invokes a task interface, and for
tracking the task and process context of each interaction.

The Logging module records user interactions with the system on two inter-
connected levels: the task level and the interface level. Logging on the task level
involves keeping track of task instances, i.e., the user’s engagement with the sys-
tem on a particular task. A task instance can extend over multiple user-sessions,
and the Logging module chronicles the execution of a task instance from the
beginning to the end.

The interface layer log stores the detailed key-press level information regard-
ing the user’s interactions with input controls within the task. To support usage
data capture, we have implemented and used a library of user input compo-
nents that record the interaction data. Taken together, the information contained
within these two layers of the Logging module enables a quick and complete re-
construction of a sequence of events as they occurred over time.

The records of organizational data, such as customers, vendors, and invoices,
are stored in the ERP system database, which we refer to as the Domain module.
We call Domain module entities domain objects and their corresponding tables
object types.

Definition 1. A domain object is a record from a table in the Domain module.
The domain object type, or simply object type, is the name of the table in the
Domain module storing the domain object.

All three modules of the TIL model are also related to the Domain module
- these relationships specify the flow of organizational data through the tasks.
In particular, each task description (Task module) includes a specification of
the type of organizational data object that the task produces, called the task’s
output object type. For example, the Add Material task produces a record in the
Material table; thus, it’s output type is Material. The references to the actual
objects (e.g. a concrete Material record) produced as a result of a specific task
instance are contained within the Logging module’s record of task instances.

Along with the output object type for a task, the TIL model also includes
information on each task’s input object types. Each user input component de-

7

scription in the Interface module specifies the type of object that should be
entered in the field. Since each input component is associated with a task, the
TIL model enables the derivation of the set of input objects used in a task.

4.2 TIL relations

This section introduces the details of the TIL model that are essential to the
algorithms and derivations that follow. Boldface is used to denote the names of
the relations, and italics is used for the attributes. The relations are defined over
standard SQL types, such as varchar, int and datetime. Please refer to figure 2
for descriptions of the attributes of each relation that we review below.

The Domain module represents the ERP organizational data and is not part
of TIL, but TIL model relations reference the Domain module tables that store
a variety of domain objects. The User relation of the Domain module has a
special significance, because it is linked to all usage log related records. For
the sake of simplicity, we model the User relation as consisting of the single
identifier attribute UID. Other attributes describing the user’s relationship with
a particular organizational unit, role, or set of permissions within the system
could be added for greater richness of informational queries from the log data,
but such treatment of User is not included in this paper.

The Task module consists of three relations: Task,Process and ProcessTasks.
The DTableOut attribute of the Task table refers to the task’s output type
which, as we defined in section 4.1, is the name of a table from the Domain
module that stores the output objects associated with that task. The Process
and ProcessTasks tables list the business processes and specify which tasks are
included in each process, respectively.

The Interface module represents user interface components and their orga-
nization and relationship with the Task and Domain modules. Each Task is
associated with a set of distinct TaskPages which, in turn, consist of Groups
of InputControls.

The InputControl table describes interactive GUI elements such as buttons,
text fields, lists, and menu items. Input control records for text fields specify in
the DTable column the type of object that must be entered into the text field. For
example, a field designated for a customer number will have the DTable attribute
value equal to Customer, which is the table storing customer information in
the Domain module. The DTable column of input controls used for entering
non-domain object data, such as an order quantity or a delivery date, has no
value.

The Logging module records the usage history and describes the relationships
between click-level and keyboard-level data, users, and tasks.

8

Module Description

Domain User U User description UID User Identifier (PK)
others omitted

Task Task T Task description TID Task Identifier (PK)
Tname Task name
DTableOut Task output type(Domain table name)

Process PR Process Description PRID Process Identifier (PK)
PRName Process name

ProcessTasks PRT Tasks included in process PRID Process identifier
TID Task identifier
Opt Task optional or required status

Interface Task Page TP PID identifier
TID Task identifier

Group G GID Group Identifier
PID Task Page Identifier

Input Control IC User input component ICID Input Control Identifier (PK)
GID Group Identifier
DTable Input Object Type (Domain table name)

!"##$%# User Session !" SID Session Identifier (PK)
UID User Identifier
ts Time session started
te Time session ended

Task Instance #$ TIID Task Instance Identifier (PK)
TID Task Identifier
ts Start time of task instance
te End (completion) time
OutPKVal Output object produced by the task instance

"#$ STIID Session Task Inst. Identifier (PK)
TIID Task Instance Identifier
SID Session Identifier
ts Start time of session task instance
te End time of session task instance

Entry Field EF Input control instantiations EFID Entry Field Idenetifier (PK)
&'&(Input Control Identifier
SID Session Identifier
TIID Task Instance Identifier

User Entry UE UEID User entry record (PK)
EFID Entry Field Idenetifier
ts Start time of user input (focus-in)
te End time of user input (focus-out)
Vs Value in field at the start time
Ve Value in field at the end time
E user input

Timed user input per entry field

Task instance breakdown by user
session

User session - continuous period
between the time user logs in and
out of the system.

Task instance - an instantiation of
a task, possibly spanning multiple
user sessions between start and
completion.

Session Task
Instance

Relation and Abbreviation Atributes and their descriptions

Interface pages associated with
each task

Group of input controls on a page

Fig. 2. A summary of the essential components of the TIL model and the Domain
module.

The UserSession relation represents periods of time during which the user
is continuously logged in to the system. It is used to relate each interaction to a
particular user.

The TaskInstance relation records instantiations of tasks. A new task in-
stance record is created each time the user opens a new task. The task instance
end time corresponds to the moment when the user either cancels the task in-
stance or completes it, in which case the output is saved in the Domain database.

9

The identifier of the output object is stored in the outPKVal column of the Task
Instance record.

As the task instances can span multiple user sessions, the SessionTaskInstance
relation is used to record the task instance execution times within different ses-
sions.

Taken together, the UserSession, TaskInstance and SessionTaskInstance
relations specify the user and task context of system-user interactions. The de-
tailed log of system-user interactions within the task instances is stored within
the EntryField and UserEntry relations, described next.

The EntryField table represents the instantiations of input controls corre-
sponding to a specific task instance and user session. The ICID attribute refers
to the instantiated input control. SID and TIID are references to the session
and task instances, respectively, in which the entry field was created.

The UserEntry relation records the user input directed to the specified
entry field. The start and end times of the period when the entry field is in
continuous focus are defined by ts and te . Attributes Vs and Ve record the value
in the text field at the start and the end of that time period, while E denotes a
string recording the user’s input as a sequence of keystrokes or mouse events.

4.3 Task and process graphs and algorithms

To provide context-aware guidance and navigational support for design principle
DP2 requires that the system be aware of the relationships between the tasks
and the input-output flow of objects between them. The TIL model specifies
the input and output types of tasks in a process and, during runtime, records
the actual domain objects that are instantiated. This information enables the
automatic determination of the relationships between task and task instances in
a chain comprising a business process. Figure 3 illustrates the types of task and
process-related information that we focus on in this section.

Task graph. Figure 3(a) presents a fragment of a system task graph that can be
composed from descriptions contained within the Task and Interface modules.
The nodes correspond to tasks, and an arrow from one node to another designates
that the output of the source task may be used as an input to the target task.
For example, arrows from task a, Add Material, lead to tasks b, c, e, and f . This
is because these four tasks have Material as part of their input, which can be
established by querying the TIL model records on the input fields for these tasks.

The task graph is composed from the TIL model data using procedures
DInput and DOutput , which stand for Domain Input and Domain Output and
are depicted in figure 4. We use relational algebra operations [12] of natural
join (∗), projection (π), selection (σ) and renaming (ρ). We use the abbreviated
names of the TIL relations, as presented in the third column of figure 2. Up-
percase letters used here and throughout the paper denote relations, while the
names of scalar values and individual tuples begin with a lowercase letter.

Procedure DInput(paramTID) returns a set of domain input types of task
paramTID , i.e. the types of domain objects that can be entered as an input to

10

b

e f

c

a
g h

d

. . .

b

e f

c

a

Legend
a – Add Material
b – Add Purchase Requisition
c – Add Purchase Order
d – Add Goods Receipt
e – Edit Purchase Requisition
f – Edit Purchase Order
g – Add Vendor
h – Add Plant

– required task

– optional task

(a) Fragment of a task graph (b) Process graph ‐ subgraph of the task graph
showing tasks of the Purchasing process.

(c) Sample Purchasing process instance
Subgraph of a task instance graph corresponding to
a sample process instance a1c1a2f1f2d1

c1
(user12)

Material, #74

f1
(user12)

PO, #47

a2
(user12)

Material, #80

a1
(user5)

f2
(user13)

PO , #47 PO, #47

d

d1
(user7)

GR, #43

Fig. 3. Task, process and process instance graphs.

task paramTID . (We refer to the tuples from our data model by their identifier
value, as described in the fifth column of figure 2.) DInput computes the result by
collecting the set of table names associated with all of the task’s input controls.
Procedure DOutput(paramTID) returns the value of the DTableOut attribute,
which specifies the output table for the task with identifier paramTID .

Definition 2. A task graph is a directed graph in which the set of nodes cor-
responds to the tasks, and a link from task a to task b is drawn if and only if
DOutput(a) ∈ DInput(b).

Process graph. In our framework, the processes are specified as a set of tasks,
which must be related via their inputs and output. We define business processes
as being comprised of one or more required tasks and zero or more optional
tasks. Optional tasks are those that are not required by the system to complete
a process. Process compositions from tasks can be configured by organizations
to match their own practices.

Definition 3. A process is a set of tasks, which form a weakly connected sub-
graph in the task graph. Some steps in a process are designated as required, while
the rest are optional.

11

Procedure DInput
Input: task id paramTID
Output: set of domain input types of task paramTID
1 R = πIC.DTable(σT.TID=paramTID(T ∗TP ∗G ∗ IC))
2 return: R

Procedure DOutput
Input: task id paramTID
Output: domain output types of task paramTID
1 return: πT.DTableOut(σT.TID=paramTID(T))

Fig. 4. Computing the domain input and output types of a task.

Figure 3(b) demonstrates a part of the task graph corresponding to the Pur-
chasing process. Defining processes based on the natural flow of business objects
between tasks has a number of advantages for the purpose of providing user
guidance. For example, given a task, we can determine the tasks that precede
it and the tasks that may follow it by using just the data from the Task and
Interface modules. In comparison, data mining approaches have to rely on hav-
ing significant amounts of usage data to provide a similar kind of guidance. Our
approach also produces accurate descriptions of process and process instances,
whereas data mining algorithms are inherently affected by noise. Furthermore,
given the data in the Logging module, we can present the users with a full his-
tory of the process instance that they are working on, as shown later in this
section. An illustration of one such process instance derived from empirical data
that corresponds to the process in figure 3(b) is depicted in figure 3(c).

Definition 4. We say that task a precedes task b and that task b follows task a
in a given process p if a, b ∈ p and there is a path from a to b in the task graph.

In the multi-user environment of ERP systems, the precedence relationship
between tasks does not necessarily correspond to the temporal order of the task
instances involved in a process. Instead, a precedes task b reflects that a is
involved in producing input to b, and, in turn, b is involved in handling the
output from a.

An algorithm that computes the set of tasks preceding a given task in a
specified process is depicted in figure 5. Procedure PrecedingTasks is a breadth-
first traversal of the process subgraph of the task graph starting from the given
task in the reverse direction of the arrows. The procedure starts from the given
task paramTID (step 2), identifying all of its input types (step 6) and adding
the tasks within the process that produce objects of those types to the set Θ1

(steps 7,8). The same process is performed for each task in Θ1 and so on until no
new tasks (i.e. tasks that are not already found in the union of all visited tasks
∪n−1

i=0 Θi) are discovered. The set of tasks following a given task is computed by
a similar traversal in the direction of the arrows.

12

Procedure PrecedingTasks
Input: task id paramTID , process id paramPRID
Output: set of tasks preceding task paramTID in process paramPRID
1 n = 0
2 Θ0 = {paramTID}
3 do
4 n = n + 1
5 for each taskTID ∈ Θn−1

6 InputTypeSet = DInput(taskTID)
7 for each objType ∈ InputTypeSet
8 Θn = Θn ∪ ProducerTasks(objType, paramPRID)− ∪n−1

i=0 Θi

9 while (Θn 6= ∅)
10 return: ∪n

i=1Θi

Procedure ProducerTasks
Input: domain object type paramObjType, process id paramPRID
Output: task ids for task from process paramPRID outputting objects of type
paramObjType
1 return: πT.TID(σT.DOutputType=paramObjType∧PRT.PRID=paramPRID(T ∗PRT))

Fig. 5. Computing the set of tasks preceding a given task in a specified process.

Task instance graph and process instance identification. The TIL model
also provides for an easy and noiseless reconstruction of process instances, i.e.
sets of task instances corresponding to a specified process, regardless of the order
in which they have been executed and the number of users involved.

We introduce below two auxiliary procedures, TIIn and TIOut, which stand
for Task Instance Input and Output, respectively. Shown in figure 6, these proce-
dures return the actual inputs and output objects of a given task instance. Both
are used in a process instance identification procedure, whose definition follows
in figure 7. The identification procedure is based on a domain object produced
as an output and can be best understood as a breadth first traversal of the task
instance graph.

Procedure TIIn(paramTIID) returns a list of (objectType, objectID) pairs
for those objects entered into the entry fields associated with paramTIID . To
determine which object id was entered, a query selects the chronologically last
value of an entry field recorded in the UserEntry relation. To perform this
selection, steps 1-2 of the procedure compute the complete set of user entries
into the entry fields associated with task instance paramTIID . Based on the
timing of the user entries, steps 3-4 produce the set of final values for each entry
field, i.e. the values that were actually submitted. From those final values and
the description of their domain type stored in the InputControl relation, step
5 composes a set of (objectType, objectID) pairs, where objectID is the value
entered in the field, and objectType specifies its domain type.

TIOut(paramTIID) returns the output object type and id of the task instance
paramTIID from the Task and TaskInstance relations.

13

Procedure TIIn
Input: task instance id paramTIID
Output: set of pairs (objectType, objectID) used as input to paramTIID
1 J = σTI.TIID=paramTIID(TI) ∗EF ∗ IC ∗UE
2 K = σIC.DTable!=null∧UE.Ve!=null(J)
3 L = ρLast(EFID,te)(EFIDFMAXte

(UE))
4 M = σUE.te=Last.te(K ∗ L)
5 R = ρTIIn(objectType,objectID)(πIC.DTable,UE.Ve(M))
6 return: R

Procedure TIOut
Input: task instance id paramTIID
Output: pair (objectType, objectID) describing the type and value of domain output
of paramTIID
1 return: πT.DTable,TI.OutPKV al(σTI.TIID=paramTIID(TI ∗T))

Fig. 6. Procedures computing the input and output of a specified task instance.

Definition 5. A task instance graph is a labeled directed graph in which the set
of nodes corresponds to the task instances, and a link from task instance a to
task instance b with label o = TIOut(a) is drawn whenever TIOut(a) ∈ TIIn(b)
and a.te < b.ts, where ts and te refer to the task instance start and end time.

The process instance information can be explored in a number of useful ways,
including:

1. identifying all complete or incomplete instances of a given process, or for a
given user,

2. given an object, such as a goods receipt, identifying all the task instances
within the process involved in creating that object, and

3. identifying all instances of a process that use a given object, such as a pur-
chase requisition, as their input.

As an illustration, figure 7 presents a procedure called ObjectHistory that
determines, for a given process and a given domain object, the part of that
process that led to the current state of that object. The algorithm is a breadth-
first traversal of the task instance graph induced by the Logging module. The
traversal is performed in the reverse direction of the arrows, starting from the
chronologically latest task instance that has the given domain object as its out-
put. The traversal is complete when all task instances that are a part of the
given process are identified. The output of the procedure is a set of task in-
stances that correspond to the steps of the input process up to the point of the
latest modification of the input object.

Procedure Producer , shown in figure 7, is called by ObjectHistory and returns
the task instances corresponding to a given process paramPRID that have a
specified object as their output. Only task instances that ended before a specified
time are returned.

14

Procedure ObjectHistory
Input: process PRID, domain table name objType, domain object identifier objID
Output: a set of task instances from TI that correspond to the process PRID and
precede the latest task instance outputting the object objID
1 TIs = Producer(objType, objID ,CurrentTime())
2 latestTime = FMAXte

(TIs)
3 Θ0 = πTIID(σTI.TIID∈TIs∧TI.te=latestTime(TI))
4 n = 0
5 while (Θn 6= ∅)
6 n = n + 1
7 Θn = ∅
8 for each ti ∈ Θn−1

9 Υn = TIIn(ti)
10 for each tiinput ∈ Υn

11 Θn = Θn ∪ Producer(tiinput .objectType, tiinput .objectID , ti .te)− ∪n−1
i=1 Θi

12 end while
13 return: ∪n

i=1Θi

Procedure Producer
Input: process parPRID, domain table name objType, domain object identifier
objID , time value t
Output: a set of task instances from TI ending before or at t of tasks from process
PRID that outputted object objID of type objType
1 K = πTIID(σPRT.PRID=parPRID∧(objType,objID)∈TIOut(TI.TIID)∧TI.te<=t(TI ∗T ∗PRT))
2 return: K

Fig. 7. Determining the object’s history within a specified process.

ObjectHistory(paramPRID , objType, objID) starts by calling Producer to ob-
tain all task instances that had the parameter object as their output. From that
set, steps 1-3 determine the task instance that ended most recently (we assume a
domain object cannot be edited simultaneously by different task instances). That
task instance, stored in Θ0, is the starting point of the traversal. The traversal
can be characterized as a series of computations of setsΘn, for n >= 1, comprised
of task instances adjacent to those in Θn−1 in the task instance graph, which
continues until no new task instances can be discovered. Only task instances
corresponding to the tasks in the specified process paramPRID are considered.
The procedure returns a set of all task instances discovered via the traversal.
This set contains all instances of the tasks from the given process linked via the
input-output chain that have the given object as their output.

The data model and algorithms presented in this section are used in the
illustrative examples presented in the next section.

5 Empirical Validation

To evaluate how the TIL framework meets its design goals and evaluate its
usefulness for supporting collaborative system-user interactions, we have built

15

a prototype ERP system that utilizes the TIL model. We have conducted an
emulation of ERP usage in an organization using our prototype in a laboratory
setting. The emulation involved 15 users performing typical ERP tasks over a
period of 27 days, with overall logged usage time of a little under 12.5 hours.
There were 39 user sessions that resulted in 6,691 separate user entries. The
users accessed a total of 15 different task pages, which created approximately
450 different task instances.

We have tested all algorithms presented in the previous section on the usage
data collected during the emulation. Here, we present examples that demonstrate
the usefulness of our framework for supporting design principles DP2 and DP4
using the emulation data.

5.1 Example 1: implementing Design Principle 2

Design principle 2 mandates that the user performing a business process be
assisted by having the system display navigational guidance through completed
and remaining tasks. This guidance should take into account the task and process
context. It is easy to see that the TIL representation and algorithms presented in
the previous section directly support derivations of context and process guidance
information.

Figure 8 shows a design of an interactive display visualizing the tasks that
precede and follow the user’s current task. This display was constructed from the
emulation data using the data and algorithms presented in the previous section.
It includes the Purchasing process task information and references to the task
instances related to the Add Purchase Order task instance.

Add Material

Add Purchase Requisition
Edit Purchase Requisition

Material #74 Nov 11, 17:11
Material #80 Dec 2, 10:57

‐‐‐‐‐‐‐‐‐

‐‐‐‐‐‐‐‐‐

Edit Purchase Order
Add Goods Receipt

Current task: Add Purchase Order PO #47 Dec 2, 10:59

Precede

Follow

PURCHASING process tasks Current process instance:
task instance outcome , date

Fig. 8. An interactive display showing a Precede/Follow list, providing quick access to
related tasks, objects and task chronology.

The left side of the display in figure 8 specifies the tasks, separated into
those that can precede the current task and those that can follow it. As defined
in section 4.3, preceding tasks are those that are involved in producing the input

16

to the current task and are obtained by executing the PrecedingTasks procedure
(fig. 5), which derives the information from the Task and Interface modules of
TIL. The Precede/Follow list highlights in boldface the tasks that are required
for the process. It also serves as a useful reminder of the tasks related by the
input-output flow and as a navigation tool: given that each task is associated
with its interface page specification, a task name can also link to the appropriate
task page.

The number of instantiations of each preceding task and the timing of each is
included in the instance-specific information on the right side of the interactive
display. The figure shows that the currently active task instance of Add Purchase
Order was preceded by two Add Material instances. The other two preceding
tasks are optional, and are not present in this process instance. This data is
produced using the algorithm presented in figure 7, which returns a list of task
instances within the process that are involved in producing the object created
by the current task. The data includes the objects created by each preceding
task instance and the date that the task instance was completed. Clicking on
the object description (e.g. Material #74) will display the object. The user can
also sort the list of preceding instances by the completion date to see the actual
chronology of the process instance.

5.2 Example 2: Implementing Design Principle 4

A core proposition of DP4 is that the system should make use of what it knows
about the user, the organization, the tasks, and the context to provide faster
access to more likely choices. Software systems often do make use of prior user
interactions for assisting with data entry. For example, in filling out a form on
the Web, the browser will typically display one or more values that the user had
previously entered to a field. With the knowledge represented by the TIL model,
the system can provide access to values previously entered by the current user as
well as by other users performing a particular task. The latter can be especially
helpful to users with limited usage histories of their own. The granularity of
usage data in our model also makes it possible to determine the users experience
at a detailed level, so that appropriate assistance can be offered not only to
users who are novices with the system overall, but also to those with limited
experience in a particular task or even with a particular component within a
task.

To demonstrate the type of information available to the system for use in
tailoring the support it offers on a task-by-task basis, table 1 contains data from
our laboratory study showing the users who submitted the Purchase Requisition
(PR) Enter Header and Defaults page during a two-day period, the number of
times they submitted, and the date of their most recent submission.

For those users with recent and frequent experience in submitting purchase
requisitions, default values based on prior entries are likely to be the most use-
ful. For someone with little or no experience, however, knowledge of the values
entered by other users performing the same task can be very helpful. Values
previously entered to a field can be sorted by frequency of entry, the most recent

17

!"#$%&' ($#)*#+,-
./%01+#%&2#3"%4%56"2%/#,#+2%

7*831""16+
*"#$9: ; ;<4=>?%9@A9B
*"#$C ; ;<4=>?%9;A9D
*"#$E ; ;@4=>?%9<ABB
*"#$F @ ;@4=>?%9<A;F
*"#$D ; ;@4=>?%9:AB:

Table 1. Count of submissions and time stamp of most recent submission of PR Header
and Defaults page during a two-day period

date of entry, or any other useful property. Table 2(a) shows the values entered
by all users into the Plant field in the PR header and defaults page during a two-
week time period. The most frequently entered value during that time period
was 15, which was also the value entered most recently. This type of information
can be used in guiding a user with limited experience in filling out any form
within the system.

(a)

!"#$% &'%($%)*+
,-./01%*%)/02)/'+0

3"/%

45 6 7832904:;6:
44 7 78329046;6:
4< 7 783290=;76
47 7 7:8>?!046;45
4: 7 7832904<;5@
46 4 78329047;:5
A 4 7832904<;:5 (b)

!"#$%&'("%)(*&
+!',

!'&-./0 1.%.&23#0
455066&
'($"%6

7 8*."% 9"% :;
< 10*9=0)3&1.%0 142> :?
@ A%().B0&C(5.D(" 9"% EE
F G0"H() 9"% :F

:?7 4HH&8*."% /0"$9%0/ ?
:?< >H9%&8*."% /0"$9%0/ ?
;?7 4HH&G0"H() /0"$9%0/ ?
;?< >H9%&G0"H() /0"$9%0/ ?

Table 2. (a) User-entered values during two-week period into Plant field in PR Header
and Defaults page; (b) Access counts for all input controls in the PR Header and
Defaults page

DP4 also specifies that, if a choice of data or action is obvious, the system
should have the option of enacting it, with the user able to replace or cancel that
action. If a user almost always enters the same plant value in filling out a PR,
for example, then it would make sense for the system to enter that value for the
user. Similarly, if the user typically enters multiple PRs, as evidenced from the
log, then the system should let the user cycle through the PR process multiple
times, while also providing easy access to other frequently performed tasks.

The data captured to the usage log also provides insights into the practices
of the organization that can be used for assisting the user. As an example,
consider the fields that the organization requires users to fill in versus those

18

required by the ERP system. While the latter may (or may not) be marked
as required in the system, there is typically no discernible way for users to see
what fields must be entered in order to adhere to organizational practices; this
is because customization is costly and difficult to maintain when systems are
upgraded. The system, however, does have knowledge of which fields are most
often completed, or left blank; which options are most typically selected, or
ignored, etc. Highlighting fields that are typically filled in can help improve the
users’ efficiency in filling out forms, particular those with which they have less
experience.

As an example, table 2(b) shows the number of times each of the input
controls in the PR header and defaults page were accessed. While storage location
is not a required field, it was the most frequently accessed field. Table 2(b)
also shows that none of the menu items were accessed from this page, as there
were other ways of navigating that were chosen instead. Because ERP systems
are designed to meet the needs of a vast array of users in varying industries,
there will typically be fields or options on every page that are not needed by
particular groups of users. The system can be designed to not include those
components when rendering the interface. In particular, the removal of fields that
are never filled in because they are not relevant to a particular organization’s
practices can lessen interface complexity and improve user efficiency. For other
components, such as the menu items in Table 2(b) and other navigational aids,
it could be that the user is just not aware of them but they could actually be
beneficial (as evidenced by another group of users making frequent use of them,
for example). The system could be designed to direct the user’s attention to
hitherto unexplored options based on its knowledge of overall system usage.

6 Conclusions and Future Work

We have presented a framework, consisting of the TIL data model and algo-
rithms, that was designed as a foundation for implementing design principles
for achieving greater ERP system usability. The framework was implemented
within an ERP prototype and tested using data obtained in a laboratory emu-
lation of ERP usage in an organization. The evaluation confirmed that the TIL
model meets its design goals of supporting context-aware system interactions by
enabling real-time querying of contextual and historical information in support
of the design principles from section 3.

The task and process specifications contained within the TIL model structure
alone (without the usage log data) make it possible to identify all of the tasks
that lead to the creation of a specific type of object and all of the subsequent
tasks in which that output can be used. The TIL model can also be exploited for
providing support to users by informing them, for example, of the flow of outputs
through the system leading to the task currently being worked on. Analysis of
the usage data within the TIL model provides the larger picture of the many
possible ways that users can complete processes with the system, which can be

19

applied to navigational support, guiding the user in input choices and actions,
and providing access to data and actions that are most likely to be useful.

A limitation of the presented framework is that tasks are described as having
only one output: while many ERP tasks can be characterized in this way, there
are some tasks that produce more than one object type. The model and algo-
rithms can be extended to handle multiple output objects in a straightforward
way.

Compared to the related work in workflow mining, which addresses some of
the same aspects of system behavior, our approach is both model- and log-data-
driven rather than being based solely on usage log data. This results in several
advantages, including accurate and complete process instance identification re-
gardless of the number of process instances in the log, and the ability to provide
user guidance that is based on the model of tasks, processes and object flow.

In this paper, we provided examples illustrating the utility of the framework
for implementing two of the four principles, DP2 and DP4. The framework also
provides a foundation for several aspects of the other two principles. Indeed, the
declarative description of tasks and related user interface components enables
the easy customization of the system’s vocabulary. The process descriptions in
the TIL model provide a mechanism for process customization, as required by
DP1. DP3 involves reasoning about errors, which is not addressed by the model
presented here, but the TIL model already contains components that are a nec-
essary part of error-related support of the user. In the future, we will extend
the framework to fully support all four design principles. We will also develop
proof-of-concept implementations of the kinds of interface features described in
section 5 and evaluate them in user studies.

References

1. van der Aalst, W.M.P.: Process discovery: Capturing the invisible. IEEE Comp.
Int. Mag. 5(1), 28–41 (2010)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Publishing Company, Incorporated, 1st edn. (2011)

3. van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: From the past
to present and future. In: CAiSE. pp. 38–52 (2010)

4. van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F.,
de Medeiros, A.K.A., Song, M., Verbeek, H.M.W.E.: Business process mining: An
industrial application. Inf. Syst. 32(5), 713–732 (2007)

5. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142
(2004)

6. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow
logs. In: Proceedings of the 6th International Conference on Extending Database
Technology: Advances in Database Technology. pp. 469–483. EDBT ’98, Springer-
Verlag, London, UK (1998), http://dl.acm.org/citation.cfm?id=645338.650397

7. Babaian, T., Lucas, W.T., Xu, J., Topi, H.: Usability through system-user collab-
oration. In: DESRIST. pp. 394–409. Lecture Notes in Computer Science, Springer
(2010)

20

8. Bratman, M.E.: Shared cooperative activity. Philosophical Review 101(2), 327–341
(1992)

9. Brusilovsky, P., Cooper, D.W.: Domain, task, and user models for an adaptive
hypermedia performance support system. In: IUI ’02: Proceedings of the 7th in-
ternational conference on Intelligent user interfaces. pp. 23–30. ACM Press, New
York, NY, USA (2002)

10. Cooprider, J., Topi, H.and Xu, J., Dias, M., Babaian, T., Lucas, W.: A collabo-
ration model for ERP user-system interaction. In: Proceedings of the 43rd Hawaii
International Conference on System Sciences (HICSS-2010) (2010)

11. Dustdar, S., Hoffmann, T., van der Aalst, W.M.P.: Mining of ad-hoc business
processes with teamlog. Data Knowl. Eng. 55(2), 129–158 (2005)

12. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, Fourth Edition.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)

13. Grosz, B.G., Kraus, S.: Collaborative plans for complex group action. Artificial
Intelligence 86(2), 269–357 (1996)

14. Günther, C.W., Rozinat, A., van der Aalst, W.M.P.: Activity mining by global
trace segmentation. In: Business Process Management Workshops. pp. 128–139
(2009)

15. Hamerman, P.: ERP applications 2007: Innovation rekindles. Forrester Research
(2007)

16. Hestermann, C.: Key issues for enterprise resource planning. Gartner (2009)
17. Iansiti, M.: ERP end-user business productivity: A field study of SAP & Microsoft:

Keystone strategy. http://download.microsoft.com/download/4/2/7/427edce8-
351e-4e60-83d6-28bbf2f80d0b/KeystoneERPAssessmentWhitepaper.pdf (down-
loaded 12/21/2009) (2007)

18. Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation
of user interfaces. ACM Computing Surveys 33(4), 470–516 (2001)

19. Jacko, J.A., Sears, A. (eds.): The human-computer interaction handbook: funda-
mentals, evolving technologies and emerging applications. L. Erlbaum Associates
Inc., 2 edn. (2008)

20. Jameson, A.: Adaptive interfaces and agents. In: Sears, A., Jacko, J.A. (eds.) The
Human-Computer Interaction Handbook: Fundamentals, Evolving Technologies
and Emerging Applications, pp. 433–458. CRC Press, Boca Raton, FL, 2nd edn.
(2008)

21. Linton, F., Joy, D., Schaefer, H.P., Charron, A.: Owl: A recommender system for
organization-wide learning. Educational Technology & Society 3(1) (2000)

22. Otter, T.: Case study: Ness combines consumer application ease of use with erp
robustness. Gartner (2008)

23. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

24. Schonenberg, H., Weber, B., Dongen, B., Aalst, W.: Supporting flexible processes
through recommendations based on history. In: Proceedings of the 6th Interna-
tional Conference on Business Process Management. pp. 51–66. BPM ’08, Springer-
Verlag, Berlin, Heidelberg (2008)

25. Terveen, L.G.: Overview of human-computer collaboration. Knowledge-Based Sys-
tems 8(2-3), 67–81 (1995)

26. Topi, H., Lucas, W., Babaian, T.: Identifying usability issues with an ERP imple-
mentation. In: Proceedings of the International Conference on Enterprise Informa-
tion Systems (ICEIS-2005). pp. 128–133 (2005)

